Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cancer Metastasis Rev ; 43(1): 379-391, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38319453

RESUMEN

Intra-tumoural heterogeneity and cancer cell plasticity in colorectal cancer (CRC) have been key challenges to effective treatment for patients. It has been suggested that a subpopulation of LGR5-expressing cancer stem cells (CSCs) is responsible for driving tumour relapse and therapy resistance in CRC. However, studies have revealed that the LGR5+ve CSC population is highly sensitive to chemotherapy. It has been hypothesised that another subset of tumour cells can phenotypically revert to a stem-like state in response to chemotherapy treatment which replenishes the LGR5+ve CSC population and maintains tumour growth. Recently, a unique stem cell population marked by enriched clusterin (CLU) expression and termed the revival stem cell (RevSC) was identified in the regenerating murine intestine. This CLU-expressing cell population is quiescent during homeostasis but has the ability to survive and regenerate other stem cells upon injury. More recently, the CLU+ve signature has been implicated in several adverse outcomes in CRC, including chemotherapy resistance and poor patient survival; however, the mechanism behind this remains undetermined. In this review, we discuss recent insights on CLU in CRC and its roles in enhancing the plasticity of cells and further consider the implications of CLU as a prospective target for therapeutic intervention.


Asunto(s)
Neoplasias Colorrectales , Resistencia a Antineoplásicos , Animales , Humanos , Clusterina/metabolismo , Neoplasias Colorrectales/patología , Células Madre Neoplásicas/patología
2.
Methods Mol Biol ; 2691: 55-69, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37355537

RESUMEN

Mouse models of intestinal carcinogenesis are very powerful tools for studying the impact of specific mutations on tumor initiation and progression. Mutations can be studied both singularly and in combination using conditional alleles that can be induced in a temporal manner. The steps in intestinal carcinogenesis are complex and can be challenging to image in live animals at a cellular level. The ability to culture intestinal epithelial tissue in three-dimensional organoids in vitro provides an accessible system that can be genetically manipulated and easily visualized to assess specific biological impacts in living tissue. Here, we describe methodology for conditional mutation of genes in organoids from genetically modified mice via induction of Cre recombinase induced by tamoxifen or by transient exposure to TAT-Cre protein and subsequent phenotyping of the organoids. This methodology provides a rapid platform for assessing the cellular changes induced by specific mutations in intestinal tissue.


Asunto(s)
Carcinogénesis , Intestinos , Ratones , Animales , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Mucosa Intestinal , Organoides
3.
Hong Kong J Occup Ther ; 35(1): 96-104, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35847181

RESUMEN

Background: Learning about occupational therapy theories is crucial to occupational therapy education, and an online database is developed to facilitate students' learning of occupational therapy theories in this study. Aim: This study was conducted to evaluate the effect of this database on users' experiences. Methods: A mixed-method approach, including surveys and focus groups, was used. First- and third-year students who had studied occupational therapy theory at a university participated in this study. Results: One-hundred-and-twenty students completed the surveys, and 11 students participated in the focus groups. The students demonstrated a significant increase in the number of theories they named and their perceived understanding of theories after the semester. They rated the content, utility and satisfaction with the database in facilitating their understanding/learning of theories as moderate-good. Based on qualitative data, it appeared that the database provided specific information about occupational therapy theories and facilitated students' learning and level of interest in learning about them. However, the first-year students who accessed the database showed a significantly decreased level of interest in learning about theories, but such the decrease was not found in the third-year students. Conclusion: The study findings suggest that the use of an online database may enhance students' learning about occupational therapy theories in educational settings.

4.
J Gastroenterol Hepatol ; 37(5): 898-907, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35244298

RESUMEN

BACKGROUND AND AIM: Colorectal cancer (CRC) is the second leading cause of cancer death worldwide. To improve outcomes for these patients, we need to develop new treatment strategies. Personalized cancer medicine, where patients are treated based on the characteristics of their own tumor, has gained significant interest for its promise to improve outcomes and reduce unnecessary side effects. The purpose of this study was to examine the potential utility of patient-derived colorectal cancer organoids (PDCOs) in a personalized cancer medicine setting. METHODS: Patient-derived colorectal cancer organoids were derived from tissue obtained from treatment-naïve patients undergoing surgical resection for the treatment of CRC. We examined the recapitulation of key histopathological, molecular, and phenotypic characteristics of the primary tumor. RESULTS: We created a bio-resource of PDCOs from primary and metastatic CRCs. Key histopathological features were retained in PDCOs when compared with the primary tumor. Additionally, a cohort of 12 PDCOs, and their corresponding primary tumors and normal sample, were characterized through whole exome sequencing and somatic variant calling. These PDCOs exhibited a high level of concordance in key driver mutations when compared with the primary tumor. CONCLUSIONS: Patient-derived colorectal cancer organoids recapitulate characteristics of the tissue from which they are derived and are a powerful tool for cancer research. Further research will determine their utility for predicting patient outcomes in a personalized cancer medicine setting.


Asunto(s)
Neoplasias Colorrectales , Organoides , Estudios de Cohortes , Neoplasias Colorrectales/patología , Humanos , Organoides/patología , Medicina de Precisión
5.
Front Cell Dev Biol ; 9: 685665, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34350179

RESUMEN

Epidermal Growth Factor (EGF) has long been known for its role in promoting proliferation of intestinal epithelial cells. EGF is produced by epithelial niche cells at the base of crypts in vivo and is routinely added to the culture medium to support the growth of intestinal organoids ex vivo. The recent identification of diverse stromal cell populations that reside underneath intestinal crypts has enabled the characterization of key growth factor cues supplied by these cells. The nature of these signals and how they are delivered to drive intestinal epithelial development, daily homeostasis and tissue regeneration following injury are being investigated. It is clear that aside from EGF, other ligands of the family, including Neuregulin 1 (NRG1), have distinct roles in supporting the function of intestinal stem cells through the ErbB pathway.

6.
Cell Stem Cell ; 27(4): 646-662.e7, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32693086

RESUMEN

Epidermal growth factor (EGF) maintains intestinal stem cell (ISC) proliferation and is a key component of organoid growth media yet is dispensable for intestinal homeostasis, suggesting roles for multiple EGF family ligands in ISC function. Here, we identified neuregulin 1 (NRG1) as a key EGF family ligand that drives tissue repair following injury. NRG1, but not EGF, is upregulated upon damage and is expressed in mesenchymal stromal cells, macrophages, and Paneth cells. NRG1 deletion reduces proliferation in intestinal crypts and compromises regeneration capacity. NRG1 robustly stimulates proliferation in crypts and induces budding in organoids, in part through elevated and sustained activation of mitogen-activated protein kinase (MAPK) and AKT. Consistently, NRG1 treatment induces a proliferative gene signature and promotes organoid formation from progenitor cells and enhances regeneration following injury. These data suggest mesenchymal-derived NRG1 is a potent mediator of tissue regeneration and may inform the development of therapies for enhancing intestinal repair after injury.


Asunto(s)
Intestinos , Neurregulina-1 , Proliferación Celular , Epitelio , Células de Paneth
7.
J Clin Med ; 9(1)2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31906589

RESUMEN

Colorectal cancer stem cells have been proposed to drive disease progression, tumour recurrence and chemoresistance. However, studies ablating leucine rich repeat containing G protein-coupled receptor 5 (LGR5)-positive stem cells have shown that they are rapidly replenished in primary tumours. Following injury in normal tissue, LGR5+ stem cells are replaced by a newly defined, transient population of revival stem cells. We investigated whether markers of the revival stem cell population are present in colorectal tumours and how this signature relates to chemoresistance. We examined the expression of different stem cell markers in a cohort of patient-derived colorectal cancer organoids and correlated expression with sensitivity to 5-fluorouracil (5-FU) treatment. Our findings revealed that there was inter-tumour variability in the expression of stem cell markers. Clusterin (CLU), a marker of the revival stem cell population, was significantly enriched following 5-FU treatment and expression correlated with the level of drug resistance. Patient outcome data revealed that CLU expression is associated with both lower patient survival and an increase in disease recurrence. This suggests that CLU is a marker of drug resistance and may identify cells that drive colorectal cancer progression.

8.
Adv Sci (Weinh) ; 8(1): 2002135, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33437574

RESUMEN

Organoids are three-dimensional self-renewing and organizing clusters of cells that recapitulate the behavior and functionality of developed organs. Referred to as "organs in a dish," organoids are invaluable biological models for disease modeling or drug screening. Currently, organoid culture commonly relies on an expensive and undefined tumor-derived reconstituted basal membrane which hinders its application in high-throughput screening, regenerative medicine, and diagnostics. Here, we introduce a novel engineered plant-based nanocellulose hydrogel is introduced as a well-defined and low-cost matrix that supports organoid growth. Gels containing 0.1% nanocellulose fibers (99.9% water) are ionically crosslinked and present mechanical properties similar to the standard animal-based matrix. The regulation of the osmotic pressure is performed by a salt-free strategy, offering conditions for cell survival and proliferation. Cellulose nanofibers are functionalized with fibronectin-derived adhesive sites to provide the required microenvironment for small intestinal organoid growth and budding. Comparative transcriptomic profiling reveals a good correlation with transcriptome-wide gene expression pattern between organoids cultured in both materials, while differences are observed in stem cells-specific marker genes. These hydrogels are tunable and can be combined with laminin-1 and supplemented with insulin-like growth factor (IGF-1) to optimize the culture conditions. Nanocellulose hydrogel emerges as a promising matrix for the growth of organoids.

9.
Sci Rep ; 9(1): 3929, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850723

RESUMEN

Adrenal chromaffin cells and sympathetic neurons synthesize and release catecholamines, and both cell types are derived from neural crest precursors. However, they have different developmental histories, with sympathetic neurons derived directly from neural crest precursors while adrenal chromaffin cells arise from neural crest-derived cells that express Schwann cell markers. We have sought to identify the genes, including imprinted genes, which regulate the development of the two cell types in mice. We developed a method of separating the two cell types as early as E12.5, using differences in expression of enhanced yellow fluorescent protein driven from the tyrosine hydroxylase gene, and then used RNA sequencing to confirm the characteristic molecular signatures of the two cell types. We identified genes differentially expressed by adrenal chromaffin cells and sympathetic neurons. Deletion of a gene highly expressed by adrenal chromaffin cells, NIK-related kinase, a gene on the X-chromosome, results in reduced expression of adrenaline-synthesizing enzyme, phenyl-N-methyl transferase, by adrenal chromaffin cells and changes in cell cycle dynamics. Finally, many imprinted genes are up-regulated in chromaffin cells and may play key roles in their development.


Asunto(s)
Médula Suprarrenal/embriología , Médula Suprarrenal/metabolismo , Células Cromafines/metabolismo , Genes Ligados a X , Impresión Genómica , Médula Suprarrenal/citología , Animales , Proteínas Bacterianas/genética , Separación Celular , Células Cromafines/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Embarazo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , RNA-Seq
10.
Adv Neurobiol ; 15: 211-252, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28674983

RESUMEN

Multiple sclerosis (MS) is the most common neurodegenerative disease affecting young adults in our community. It is a complex disease influenced by gender, genetic and environmental factors. MS is a chronic inflammatory disease of the central nervous system caused by aberrant immune activation resulting in damage to myelin sheaths within the brain and spinal cord and axonal loss. The demyelinating insult initially impairs the speed and efficiency of nerve cell function. In the majority of cases, this is followed by an innate endogenous repair response that can restore the myelin sheath and nerve cell function to relatively normal levels. However over time and with subsequent demyelinating events, this capacity is lost ultimately leading to neural degeneration. The influences that oligodendrocytes and myelin exert upon nerve cells to sustain their health and viability have begun to be identified. While immune-directed therapies can reduce the frequency of relapses and development of new lesions, they have little effect upon remyelination and nerve cell repair. This presents the next big challenge in MS therapeutics; complementing immune targeted therapies with strategies that directly target the primary cause of disability, that of remyelination.


Asunto(s)
Encéfalo/fisiopatología , Enfermedades Desmielinizantes/fisiopatología , Encefalomielitis Autoinmune Experimental/fisiopatología , Esclerosis Múltiple/fisiopatología , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Remielinización/fisiología , Médula Espinal/fisiopatología , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Líquido Cefalorraquídeo/metabolismo , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/inmunología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/genética , Humanos , Inmunosupresores/uso terapéutico , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/genética , Esclerosis Múltiple/terapia , Esclerosis Múltiple Crónica Progresiva/diagnóstico , Esclerosis Múltiple Crónica Progresiva/genética , Esclerosis Múltiple Crónica Progresiva/fisiopatología , Esclerosis Múltiple Crónica Progresiva/terapia , Esclerosis Múltiple Recurrente-Remitente/diagnóstico , Esclerosis Múltiple Recurrente-Remitente/genética , Esclerosis Múltiple Recurrente-Remitente/fisiopatología , Esclerosis Múltiple Recurrente-Remitente/terapia , Remielinización/genética , Remielinización/inmunología , Factores Sexuales , Médula Espinal/diagnóstico por imagen , Médula Espinal/metabolismo , Trasplante de Células Madre
11.
Dev Neurobiol ; 76(2): 137-49, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25989220

RESUMEN

Adrenal medullary chromaffin cells and peripheral sympathetic neurons originate from a common sympathoadrenal (SA) progenitor cell. The timing and phenotypic changes that mark this lineage diversification are not fully understood. The present study investigated the expression patterns of phenotypic markers, and cell cycle dynamics, in the adrenal medulla and the neighboring suprarenal ganglion of embryonic mice. The noradrenergic marker, tyrosine hydroxylase (TH), was detected in both presumptive adrenal medulla and sympathetic ganglion cells, but with significantly stronger immunostaining in the former. There was intense cocaine and amphetamine-regulated transcript (CART) peptide immunostaining in most neuroblasts, whereas very few adrenal chromaffin cells showed detectable CART immunostaining. This phenotypic segregation appeared as early as E12.5, before anatomical segregation of the two cell types. Cell cycle dynamics were also examined. Initially, 88% of Sox10 positive (+) neural crest progenitors were proliferating at E10.5. Many SA progenitor cells withdrew from the cell cycle at E11.5 as they started to express TH. Whereas 70% of neuroblasts (TH+/CART+ cells) were back in the cell cycle at E12.5, only around 20% of chromaffin (CART negative) cells were in the cell cycle at E12.5 and subsequent days. Thus, chromaffin cell and neuroblast lineages showed differences in proliferative behavior from their earliest appearance. We conclude that the intensity of TH immunostaining and the expression of CART permit early discrimination of chromaffin cells and sympathetic neuroblasts, and that developing chromaffin cells exhibit significantly lower proliferative activity relative to sympathetic neuroblasts.


Asunto(s)
Médula Suprarrenal/citología , Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Células Cromafines/citología , Neuronas/citología , Animales , Femenino , Ratones , Cresta Neural/citología , Cresta Neural/embriología , Células-Madre Neurales/metabolismo , Embarazo , Factores de Transcripción/metabolismo
12.
Environ Sci Technol ; 47(24): 14070-9, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24228863

RESUMEN

Ciguatera fish poisoning (CFP) is a foodborne illness caused by consumption of coral reef fishes contaminated by ciguatoxins (CTXs); of the known CTX congeners, the Pacific ciguatoxins (P-CTXs) are the most toxic. Little is known about the trophodynamics of P-CTXs in coral reef systems. The present study explores the distribution, transfer, and trophic magnification of P-CTX-1, -2, and -3 in coral reef systems with high (ciguatoxic) and low (reference) ciguatoxicity in a CFP-endemic nation by use of liquid chromatography-tandem mass spectrometry (LC-MS/MS). In ciguatoxic coral reef systems, P-CTXs were detected in 54% of herbivorous fishes [total P-CTXs <0.500-1670 pg/g wet weight (ww)], 72% of omnivorous fishes (<0.500-1810 pg/g ww), and 76% of carnivorous fishes (<0.500-69 500 pg/g ww), as well as a lobster ( Panulirus penicillatus ; 2.36 pg/g ww) and an octopus (Octopodidae; 2.56 pg/g ww). The dominant P-CTXs in grazers and piscivorous fishes were P-CTX-2 and -1, respectively. No significant correlation between P-CTX levels and lipid content in three target predatory fishes indicated that accumulation of P-CTXs does not depend on fat content. A weak but significant positive relationship was observed between δ(15)N and P-CTX-1 levels, but further investigation is required to confirm its biomagnification potential.


Asunto(s)
Ciguatoxinas/análisis , Arrecifes de Coral , Monitoreo del Ambiente , Cadena Alimentaria , Animales , Bioensayo , Tamaño Corporal , Carnivoría , Peces/metabolismo , Geografía , Herbivoria , Invertebrados/metabolismo , Lípidos/análisis , Micronesia , Océano Pacífico
13.
Anal Bioanal Chem ; 405(10): 3331-40, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23392409

RESUMEN

Ciguatera fish poisoning (CFP) is a food intoxication caused by exposure to ciguatoxins (CTXs) in coral reef fish. Rapid analytical methods have been developed recently to quantify Pacific-CTX-1 (P-CTX-1) in fish muscle, but it is destructive and can cause harm to valuable live coral reef fish. Also fish muscle extract was complex making CTX quantification challenging. Not only P-CTX-1, but also P-CTX-2 and P-CTX-3 could be present in fish, contributing to ciguatoxicity. Therefore, an analytical method for simultaneous quantification of P-CTX-1, P-CTX-2, and P-CTX-3 in whole blood of marketed coral reef fish using sonication, solid-phase extraction (SPE), and liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed. The optimized method gave acceptable recoveries of P-CTXs (74-103 %) in fish blood. Matrix effects (6-26 %) in blood extracts were found to be significantly reduced compared with those in muscle extracts (suppressed by 34-75 % as reported in other studies), thereby minimizing potential for false negative results. The target P-CTXs were detectable in whole blood from four coral reef fish species collected in a CFP-endemic region. Similar trends in total P-CTX levels and patterns of P-CTX composition profiles in blood and muscle of these fish were observed, suggesting a relationship between blood and muscle levels of P-CTXs. This optimized method provides an essential tool for studies of P-CTX pharmacokinetics and pharmacodynamics in fish, which are needed for establishing the use of fish blood as a reliable sample for the assessment and control of CFP.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Ciguatoxinas/química , Anguilas/sangre , Espectrometría de Masas/métodos , Músculos/química , Animales , Ciguatoxinas/sangre , Ciguatoxinas/aislamiento & purificación , Estructura Molecular , Extracción en Fase Sólida
14.
Anal Bioanal Chem ; 400(9): 3165-75, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21505950

RESUMEN

Ciguatera fish poisoning (CFP) is a global foodborne illness caused by consumption of seafood containing ciguatoxins (CTXs) originating from dinoflagellates such as Gambierdiscus toxicus. P-CTX-1 has been suggested to be the most toxic CTX, causing ciguatera at 0.1 µg/kg in the flesh of carnivorous fish. CTXs are structurally complex and difficult to quantify, but there is a need for analytical methods for CFP toxins in coral reef fishes to protect human health. In this paper, we describe a sensitive and rapid extraction method using accelerated solvent extraction combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the detection and quantification of P-CTX-1 in fish flesh. By the use of a more sensitive MS system (5500 QTRAP), the validated method has a limit of quantification (LOQ) of 0.01 µg/kg, linearity correlation coefficients above 0.99 for both solvent- and matrix-based standard solutions as well as matrix spike recoveries ranging from 49% to 85% in 17 coral reef fish species. Compared with previous methods, this method has better overall recovery, extraction efficiency and LOQ. Fish flesh from 12 blue-spotted groupers (Cephalopholis argus) was assessed for the presence of CTXs using HPLC-MS/MS analysis and the commonly used mouse neuroblastoma assay, and the results of the two methods were strongly correlated. This method is capable of detecting low concentrations of P-CTX-1 in fish at levels that are relevant to human health, making it suitable for monitoring of suspected ciguateric fish both in the environment and in the marketplace.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Ciguatoxinas/aislamiento & purificación , Peces/metabolismo , Alimentos Marinos/análisis , Espectrometría de Masas en Tándem/métodos , Animales , Lubina/metabolismo , Línea Celular Tumoral , Humanos , Límite de Detección , Ratones
15.
Chemosphere ; 84(1): 117-23, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21397295

RESUMEN

Ciguatera is food poisoning caused by human consumption of reef fish contaminated with ciguatoxins (CTXs). The expanding international trade of tropical fish species from ciguatera-endemic regions has resulted in increased global incidence of ciguatera, and more than 50000 people are estimated to suffer from ciguatera each year worldwide. The Republic of Kiribati is located in the Pacific Ocean; two of its islands, Marakei and Tarawa, have been suggested as high-risk areas for ciguatera. The toxicities of coral reef fish collected from these islands, including herbivorous, omnivorous and carnivorous fish (24% [n=41], 8% [n=13] and 68% [n=117], respectively), were analyzed using the mouse neuroblastoma assay (MNA) after CTX extraction. The MNA results indicated that 156 fish specimens, or 91% of the fish samples, were ciguatoxic (CTX levels >0.01 ng g(-1)). Groupers and moray eels were generally more toxic by an order of magnitude than other fish species. All of the collected individuals of eight species (n=3-19) were toxic. Toxicity varied within species and among locations by up to 10000-fold. Cephalapholis argus and Gymnothorax spp. collected from Tarawa Island were significantly less toxic than those from Marakei Island, although all individuals were toxic based on the 0.01 ng g(-1) threshold. CTX concentrations in the livers of individuals of two moray eel species (Gymnothorax spp., n=6) were nine times greater than those in muscle, and toxicity in liver and muscle showed a strong positive correlation with body weight. The present study provides quantitative information on the ciguatoxicity and distribution of toxicity in fish for use in fisheries management and public health.


Asunto(s)
Ciguatoxinas/metabolismo , Peces/metabolismo , Venenos/metabolismo , Animales , Intoxicación por Ciguatera/epidemiología , Ciguatoxinas/toxicidad , Arrecifes de Coral , Monitoreo del Ambiente , Monitoreo Epidemiológico , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Micronesia/epidemiología , Músculos/efectos de los fármacos , Músculos/metabolismo , Venenos/toxicidad
16.
Mar Pollut Bull ; 58(7): 1052-62, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19268314

RESUMEN

We investigated the presence and fate of 16 antibiotics belonging to seven groups (beta-lactams, fluoroquinolones, macrolides, sulfonamides, tetracyclines, trimethoprim and amphenicols) in effluents of sewage plants and receiving waters in Hong Kong. Cefalexin, amoxicillin, ofloxacin and erythromycin-H(2)O were ubiquitous in sea water throughout Victoria Harbour, indicating continuous discharge to the environment. This is one of the few studies reporting the frequent occurrence of cefalexin and amoxicillin in sewage effluents and sea water (170-5070 and 64-1670 ng/L in sewage; 6.1-493 and 0.64-76 ng/L in sea water, respectively). Mass flows from seven sewage plants discharged an estimated total of 14.4 kg/day to the Harbour. Typhoon shelters also appeared to play an important role as sources of antibiotics, as evidenced by elevated concentrations within their boundaries. Mass balance estimations suggested significant quantities of antibiotics are discharged to the Harbour without passage through treatment plants.


Asunto(s)
Antibacterianos/análisis , Monitoreo del Ambiente , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Animales , Hong Kong , Humanos , Océanos y Mares , Aguas del Alcantarillado/química , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...