Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37047355

RESUMEN

Cardiovascular disease (CVD) is a leading cause of mortality worldwide, with cigarette smoking being a major preventable risk factor. Smoking cessation can be difficult due to the addictive nature of nicotine and the withdrawal symptoms following cessation. Electronic cigarettes (e-Cigs) have emerged as an alternative smoking cessation device, which has been increasingly used by non-smokers; however, the cardiovascular effects surrounding the use of e-Cigs remains unclear. This study aimed to investigate the effects of e-Cig aerosol condensate (EAC) (0 mg and 18 mg nicotine) in vitro on human coronary artery endothelial cells (HCAEC) and in vivo on the cardiovascular system using a mouse model of 'e-vaping'. In vitro results show a decrease in cell viability of HCAEC when exposed to EAC either directly or after exposure to conditioned lung cell media (p < 0.05 vs. control). Reactive oxygen species were increased in HCAEC when exposed to EAC directly or after exposure to conditioned lung cell media (p < 0.0001 vs. control). ICAM-1 protein expression levels were increased after exposure to conditioned lung cell media (18 mg vs. control, p < 0.01). Ex vivo results show an increase in the mRNA levels of anti-angiogenic marker, FKBPL (p < 0.05 vs. sham), and endothelial cell adhesion molecule involved in barrier function, ICAM-1 (p < 0.05 vs. sham) in murine hearts following exposure to electronic cigarette aerosol treatment containing a higher amount of nicotine. Immunohistochemistry also revealed an upregulation of FKBPL and ICAM-1 protein expression levels. This study showed that despite e-Cigs being widely used for tobacco smoking cessation, these can negatively impact endothelial cell health with a potential to lead to the development of cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Sistemas Electrónicos de Liberación de Nicotina , Animales , Ratones , Humanos , Nicotina/efectos adversos , Molécula 1 de Adhesión Intercelular , Células Endoteliales , Enfermedades Cardiovasculares/etiología , Aerosoles , Proteínas de Unión a Tacrolimus
3.
Biology (Basel) ; 12(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36829478

RESUMEN

Tenascin C (TNC) is a multifunctional large extracellular matrix protein involved in numerous cellular processes in embryonic development and can be increased in disease, or under conditions of trauma or cell stress in adults. However, the role of TNC in lung diseases remains unclear. In this study, we investigated the expression of TNC during development, in offspring following maternal particulate matter (PM) exposure, asthma, chronic obstructive pulmonary disease (COPD) and lung cancer. TNC expression is increased during lung development in biopsy cells, endothelial cells, mesenchymal cells, and epithelial cells. Maternal PM exposure increased TNC and collagen deposition, which was not affected by the removal of PM exposure after pregnancy. TNC expression was also increased in basal epithelial cells and fibroblasts in patients with asthma and AT2 and endothelial cells in patients with COPD. Furthermore, there was an increase in the expression of TNC in stage II compared to stage IA lung cancer; however, overall survival analysis showed no correlation between levels of TNC and survival. In conclusion, TNC is increased during lung development, in offspring following maternal PM exposure, and in asthma, COPD, and lung cancer tissues. Therefore, targeting TNC may provide a novel therapeutic target for lung diseases.

4.
Nat Commun ; 13(1): 7635, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36496442

RESUMEN

Chronic obstructive pulmonary disease (COPD) is characterised by airflow limitation and infective exacerbations, however, in-vitro model systems for the study of host-pathogen interaction at the individual level are lacking. Here, we describe the establishment of nasopharyngeal and bronchial organoids from healthy individuals and COPD that recapitulate disease at the individual level. In contrast to healthy organoids, goblet cell hyperplasia and reduced ciliary beat frequency were observed in COPD organoids, hallmark features of the disease. Single-cell transcriptomics uncovered evidence for altered cellular differentiation trajectories in COPD organoids. SARS-CoV-2 infection of COPD organoids revealed more productive replication in bronchi, the key site of infection in severe COVID-19. Viral and bacterial exposure of organoids induced greater pro-inflammatory responses in COPD organoids. In summary, we present an organoid model that recapitulates the in vivo physiological lung microenvironment at the individual level and is amenable to the study of host-pathogen interaction and emerging infectious disease.


Asunto(s)
COVID-19 , Enfermedad Pulmonar Obstructiva Crónica , Humanos , SARS-CoV-2 , Organoides , Bronquios , Interacciones Huésped-Patógeno
5.
Antioxidants (Basel) ; 11(11)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36421441

RESUMEN

Objective: Particulate matter (PM) with a diameter of 2.5 µm or less (PM2.5) can cross the blood-placental barrier causing adverse foetal outcomes. However, the impact of maternal exposure to low-levels of PM2.5 on liver health and the metabolic profile is unclear. This study aimed to investigate hepatic responses to long-term gestational low-dose PM2.5 exposure, and whether the removal of PM after conception can prevent such effects. Method: Female Balb/c mice (8 weeks) were exposed to PM2.5 (5 µg/day) for 6 weeks prior to mating, during gestation and lactation to model living in a polluted environment (PM group). In a sub-group, PM2.5 exposure was stopped post-conception to model mothers moving to areas with clean air (pre-gestation, Pre) group. Livers were studied in 13-week old offspring. Results: Female offspring in both PM and Pre groups had increased liver triglyceride and glycogen levels, glucose intolerance, but reduced serum insulin and insulin resistance. Male offspring from only the Pre group had increased liver and serum triglycerides, increased liver glycogen, glucose intolerance and higher fasting glucose level. Markers of oxidative stress and inflammation were increased in females from PM and Pre groups. There was also a significant sex difference in the hepatic response to PM2.5 with differential changes in several metabolic markers identified by proteomic analysis. Conclusions: Maternal PM exposure exerted sex-dependent effects on liver health with more severe impacts on females. The removal of PM2.5 during gestation provided limited protection in the offspring's metabolism regardless of sex.

6.
Front Immunol ; 13: 913044, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784293

RESUMEN

Long term e-cigarette vaping induces inflammation, which is largely nicotine independent. High-fat diet (HFD) consumption is anoter cause of systemic low-grade inflammation. The likelihood of using e-cigarettes as a weight control strategy is concomitant with the increase in obesity. In Australia, only nicotine-free e-fluid is legal for sale. Therefore, this study aimed to investigate how nicotine-free e-cigarette vapour exposure affects inflammatory responses in mice with long term HFD consumption. Mice were fed a HFD for 16 weeks, while in the last 6 weeks, half of the chow and HFD groups were exposed to nicotine-free e-vapour, while the other half to ambient air. Serum, lung, liver and epididymal fat were collected to measure inflammatory markers. While both e-vapour exposure and HFD consumption independently increased serum IFN-γ, CX3CL1, IL-10, CCL20, CCL12, and CCL5 levels, the levels of IFN-γ, CX3CL1, and IL-10 were higher in mice exposed to e-vapour than HFD. The mRNA expression pattern in the epididymal fat mirrors that in the serum, suggesting the circulating inflammatory response to e-vapour is from the fat tissue. Of the upregulated cytokines in serum, none were found to change in the lungs. The anti-inflammatory cytokine IL-10 was increased by combining e-vapour and HFD in the liver. We conclude that short-term nicotine-free e-vapour is more potent than long term HFD consumption in causing systemic inflammation. Future studies will be needed to examine the long-term health impact of nicotine-free e-cigarettes.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Animales , Citocinas/metabolismo , Dieta Alta en Grasa , Inflamación/metabolismo , Interleucina-10 , Ratones , Nicotina
7.
J Neurotrauma ; 39(21-22): 1547-1560, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35658673

RESUMEN

Traumatic brain injury (TBI) and obesity are two common conditions in modern society; both can impair neuronal integrity and neurological function. However, it is unclear whether the coexistence of both conditions will worsen outcomes. Therefore, in a rat model, we aimed to investigate whether the coexistence of TBI and a high-fat diet (HFD) has an additive effect, leading to more severe neurological impairments, and whether they are related to changes in brain protein markers of oxidative stress, inflammation, and synaptic plasticity. Sprague-Dawley rats (female, ∼250 g) were divided into HFD (43% fat) and diet (CD) (17% fat) groups for 6 weeks. Within each dietary group, half underwent a TBI by a weight-drop device, and the other half underwent sham surgery. Short-term memory and sensory function were measured at 24 h, 1 week, 3 weeks, and 6 weeks post-TBI. Brain tissues were harvested at 24 h and 6 weeks post-TBI, and markers of oxidative stress, apoptosis, inflammation, and synaptic plasticity were measured via immunostaining and Western blotting. In rats without TBI, HFD increased the pre-synaptic protein synaptophysin. In rats with TBI, HFD resulted in worsened sensory and memory function, an increase in activated macrophages, and a decrease in the endogenous antioxidant manganese superoxide dismutase (MnSOD). Our findings suggest that the additive effect of HFD and TBI worsens short term memory and sensation deficits, and may be driven by enhanced oxidative stress and inflammation.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Animales , Ratas , Femenino , Ratas Sprague-Dawley , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/metabolismo , Estrés Oxidativo , Inflamación/metabolismo , Biomarcadores/metabolismo
8.
Front Cell Neurosci ; 16: 818536, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250486

RESUMEN

OBJECTIVE: Hypoxic-ischemic encephalopathy affects ∼6 in 1,000 preterm neonates, leading to significant neurological sequela (e.g., cognitive deficits and cerebral palsy). Maternal smoke exposure (SE) is one of the common causes of neurological disorders; however, female offspring seems to be less affected than males in our previous study. We also showed that maternal SE exaggerated neurological disorders caused by neonatal hypoxic-ischemic brain injury in adolescent male offspring. Here, we aimed to examine whether female littermates of these males are protected from such insult. METHODS: BALB/c dams were exposed to cigarette smoke generated from 2 cigarettes twice daily for 6 weeks before mating, during gestation and lactation. To induce hypoxic-ischemic brain injury, half of the pups from each litter underwent left carotid artery occlusion, followed by exposure to 8% oxygen (92% nitrogen) at postnatal day (P) 10. Behavioral tests were performed at P40-44, and brain tissues were collected at P45. RESULTS: Maternal SE worsened the defects in short-term memory and motor function in females with hypoxic-ischemic injury; however, reduced anxiety due to injury was observed in the control offspring, but not the SE offspring. Both hypoxic-ischemic injury and maternal SE caused significant loss of neuronal cells and synaptic proteins, along with increased oxidative stress and inflammatory responses. CONCLUSION: Oxidative stress and inflammatory response due to maternal SE may be the mechanism of worsened neurological outcomes by hypoxic-ischemic brain injury in females, which was similar to their male littermates shown in our previous study.

9.
Front Physiol ; 12: 755124, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803738

RESUMEN

Tobacco smoking increases the risk of metabolic disorders due to the combination of harmful chemicals, whereas pure nicotine can improve glucose tolerance. E-cigarette vapour contains nicotine and some of the harmful chemicals found in cigarette smoke at lower levels. To investigate how e-vapour affects metabolic profiles, male Balb/c mice were exposed to a high-fat diet (HFD, 43% fat, 20kJ/g) for 16weeks, and e-vapour in the last 6weeks. HFD alone doubled fat mass and caused dyslipidaemia and glucose intolerance. E-vapour reduced fat mass in HFD-fed mice; only nicotine-containing e-vapour improved glucose tolerance. In chow-fed mice, e-vapour increased lipid content in both blood and liver. Changes in liver metabolic markers may be adaptive responses rather than causal. Future studies can investigate how e-vapour differentially affects metabolic profiles with different diets.

10.
Antioxidants (Basel) ; 10(7)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202305

RESUMEN

Relatively little is known about the transgenerational effects of chronic maternal exposure to low-level traffic-related air pollution (TRAP) on the offspring lung health, nor are the effects of removing such exposure before pregnancy. Female BALB/c mice were exposed to PM2.5 (PM2.5, 5 µg/day) for 6 weeks before mating and during gestation and lactation; in a subgroup, PM was removed when mating started to model mothers moving to cleaner areas during pregnancy to protect their unborn child (Pre-exposure). Lung pathology was characterised in both dams and offspring. A subcohort of female offspring was also exposed to ovalbumin to model allergic airways disease. PM2.5 and Pre-exposure dams exhibited airways hyper-responsiveness (AHR) with mucus hypersecretion, increased mitochondrial reactive oxygen species (ROS) and mitochondrial dysfunction in the lungs. Female offspring from PM2.5 and Pre-exposure dams displayed AHR with increased lung inflammation and mitochondrial ROS production, while males only displayed increased lung inflammation. After the ovalbumin challenge, AHR was increased in female offspring from PM2.5 dams compared with those from control dams. Using an in vitro model, the mitochondria-targeted antioxidant MitoQ reversed mitochondrial dysfunction by PM stimulation, suggesting that the lung pathology in offspring is driven by dysfunctional mitochondria. In conclusion, chronic exposure to low doses of PM2.5 exerted transgenerational impairment on lung health.

11.
Brain Behav Immun ; 92: 57-66, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33221488

RESUMEN

Tobacco smoking and high-fat diet (HFD) independently impair short-term memory. E-cigarettes produce e-vapour containing flavourings and nicotine. Here, we investigated whether e-vapour inhalation interacts with HFD to affect short-term memory and neural integrity. Balb/c mice (7 weeks, male) were fed a HFD (43% fat, 20 kJ/g) for 16 weeks. In the last 6 weeks, half of the mice were exposed to tobacco-flavoured e-vapour from nicotine-containing (18 mg/L) or nicotine-free (0 mg/L) e-fluids twice daily. Short-term memory function was measured in week 15. HFD alone did not impair memory function, but increased brain phosphorylated (p)-Tau and astrogliosis marker, while neuron and microglia levels were decreased. E-vapour exposure significantly impaired short-term memory function independent of diet and nicotine. Nicotine free e-vapour induced greater changes compared to the nicotine e-vapour and included, increased systemic cytokines, increased brain p-Tau and decreased postsynaptic density protein (PSD)-95 levels in chow-fed mice, and decreased astrogliosis marker, increased microglia and increased glycogen synthase kinase levels in HFD-fed mice. Increased hippocampal apoptosis was also differentially observed in chow and HFD mice. In conclusion, E-vapour exposure impaired short-term memory independent of diet and nicotine, and was correlated to increased systemic inflammation, reduced PSD-95 level and increased astrogliosis in chow-fed mice, but decreased gliosis and increased microglia in HFD-fed mice, indicating the inflammatory nature of e-vapour leading to short term memory impairment.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Animales , Encéfalo , Dieta Alta en Grasa , Masculino , Ratones , Ratones Endogámicos C57BL , Nicotina
12.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076522

RESUMEN

Current therapeutic options for obesity often require pharmacological intervention with dietary restrictions. Obesity is associated with underlying inflammation due to increased tissue macrophage infiltration, and recent evidence shows that inflammation can drive obesity, creating a feed forward mechanism. Therefore, targeting obesity-induced macrophage infiltration may be an effective way of treating obesity. Here, we developed cargo-less liposomes (UTS-001) using 1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC (synthetic phosphatidylcholine) as a single-agent to manage weight gain and related glucose disorders due to high fat diet (HFD) consumption in mice. UTS-001 displayed potent immunomodulatory properties, including reducing resident macrophage number in both fat and liver, downregulating liver markers involved in gluconeogenesis, and increasing marker involved in thermogenesis. As a result, UTS-001 significantly enhanced systemic glucose tolerance in vivo and insulin-stimulated cellular glucose uptake in vitro, as well as reducing fat accumulation upon ad libitum HFD consumption in mice. UTS-001 targets tissue residence macrophages to suppress tissue inflammation during HFD-induced obesity, resulting in improved weight control and glucose metabolism. Thus, UTS-001 represents a promising therapeutic strategy for body weight management and glycaemic control.


Asunto(s)
Liposomas/uso terapéutico , Obesidad/tratamiento farmacológico , Fosfatidilcolinas/uso terapéutico , Células 3T3-L1 , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Gluconeogénesis , Liposomas/química , Liposomas/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacología , Termogénesis
13.
J Inflamm (Lond) ; 17: 24, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32774172

RESUMEN

BACKGROUND: Cigarette smoke exposure (SE) during pregnancy is the largest modifiable risk factor for the development of lung disorders in offspring. We have previously shown that maternal L-Carnitine treatment can reduce the adverse impacts of maternal SE on renal and brain disorders in offspring. Here, we investigated the effect of maternal L-Carnitine supplementation on lung inflammatory pathways, autophagy, and mitophagy markers in the offspring in response to maternal SE. METHODS: Female BALB/c mice (8 weeks) were exposed to cigarette smoke for 6 weeks prior to mating, during gestation and lactation. Some of the SE dams were given L-Carnitine supplementation (1.5 mM in drinking water, SE + LC) during gestation and lactation. Lungs from the offspring were studied at birth and adulthood (13 weeks). RESULTS: At birth, in male offspring, there were increased levels of inflammatory markers (phosphorylated(p)-ERK1,2, p-P38 MAPK, p- NF-κB), and inflammasome marker (NLRP3), as well as mitophagy fission marker Drp-1 and autophagosome marker (LC3A/B-II) in the lung. Maternal L-Carnitine supplementation significantly reduced NLRP3 level. In contrast, maternal SE only increased IL1-ß in female offspring, which was reversed by maternal L-Carnitine supplementation. At 13 weeks, there was an increase in LC3A/B-II and p- NF-κB in the male SE offspring with reduced p-JNK1,2, which were partially normalised by maternal L-Carnitine treatment. Female offspring were not affected by maternal SE at this age. CONCLUSION: Maternal SE had adverse impacts on the male offspring's lung, which were partially alleviated by maternal L-Carnitine supplementation. Females seem to be less affected by the adverse effects of maternal SE.

14.
Am J Physiol Lung Cell Mol Physiol ; 319(3): L416-L421, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32697597

RESUMEN

Epidemiological studies suggest that environmental factors (e.g., air pollution) can influence the spread and infectivity of coronavirus disease 2019 (COVID-19); however, very few papers have investigated or discussed the mechanism behind the phenomenon. Given the fact that pollution will increase as social distancing rules are relaxed, we summarized the current understanding of how air pollution may affect COVID-19 transmission and discussed several possible mechanisms. Air pollution exposure can dysregulate the human immune response and make people more susceptible to infections, and affect infectivity. For example, in response to exposure to air pollution, angiotensin-converting enzyme 2 will increase, which is the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This may increase the efficiency of viral infection. It is also possible that air pollution can facilitate SARS-CoV-2 spread by increasing the transmission, and potentially, SARS-CoV-2 can also survive longer when attached to a pollutant.


Asunto(s)
Contaminación del Aire , Betacoronavirus/patogenicidad , Infecciones por Coronavirus/etiología , Infecciones por Coronavirus/virología , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/etiología , Neumonía Viral/virología , Enzima Convertidora de Angiotensina 2 , COVID-19 , Coronavirus/patogenicidad , Transmisión de Enfermedad Infecciosa/prevención & control , Humanos , Pandemias , SARS-CoV-2
15.
ERJ Open Res ; 6(2)2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32337216

RESUMEN

Thirdhand exposure to e-cigarette residue is likely to have harmful effects in children http://bit.ly/38a2umw.

16.
Front Cell Dev Biol ; 8: 38, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117969

RESUMEN

The prevalence of childhood asthma is increasing worldwide and increased in utero exposure to environmental toxicants may play a major role. As current asthma treatments are not curative, understanding the mechanisms underlying the etiology of asthma will allow better preventative strategies to be developed. This review focuses on the current understanding of how in utero exposure to environmental factors increases the risk of developing asthma in children. Epidemiological studies show that maternal smoking and particulate matter exposure during pregnancy are prominent risk factors for the development of childhood asthma. We discuss the changes in the developing fetus due to reduced oxygen and nutrient delivery affected by intrauterine environmental change. This leads to fetal underdevelopment and abnormal lung structure. Concurrently an altered immune response and aberrant epithelial and mesenchymal cellular function occur possibly due to epigenetic reprograming. The sequelae of these early life events are airway remodeling, airway hyperresponsiveness, and inflammation, the hallmark features of asthma. In summary, exposure to inhaled oxidants such as cigarette smoking or particulate matter increases the risk of childhood asthma and involves multiple mechanisms including impaired fetal lung development (structural changes), endocrine disorders, abnormal immune responses, and epigenetic modifications. These make it challenging to reduce the risk of asthma, but knowledge of the mechanisms can still help to develop personalized medicines.

17.
Nitric Oxide ; 97: 57-65, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32061903

RESUMEN

Research has attributed tissue damage post-traumatic brain injury (TBI) to two-pronged effects, increased reactive oxygen species (ROS) and impairment of endogenous antioxidant defence systems, underpinned by manganese superoxide dismutase (MnSOD). Novel antioxidant nitroxides have been shown to mimic MnSOD to ameliorate oxidative stress related disorders. This study aimed to investigate the effects of two nitroxides, CTMIO and DCTEIO, on the neurological outcomes following moderate TBI in rats induced by a weight drop device. The rats were immediately treated with CTMIO and DCTEIO (40 mM in drinking water) post-injury for up to 2 weeks. The brains were histologically examined at 24 h and 6 weeks post injury. DCTEIO reduced the lesion size at both 24h and 6 weeks, with normalised performance in sensory, motor and cognitive tests at 24h post-injury. Astrogliosis was heightened by DCTEIO at 24h and still elevated at 6 weeks in this group. In TBI brains, cellular damage was evident as reflected by changes in markers of mitophagy and autophagy (increased fission marker dynamin-related protein (Drp)-1, and autophagy marker light chain 3 (LC3)A/B and reduced fusion marker optic atrophy (Opa)-1). These were normalised by DCTEIO treatment. CTMIO, on the other hand, seems to be toxic to the injured brains, by increasing injury size at 6 weeks. In conclusion, DCTEIO significantly improved tissue repair and preserved neurological function in rats with TBI possibly via a mitophagy mechanism. This study provides evidence for DCTEIO as a promising new option to alleviate lesion severity after moderate TBI, which is not actively treated.


Asunto(s)
Antioxidantes/farmacología , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Trastornos Neurocognitivos/tratamiento farmacológico , Óxidos de Nitrógeno/farmacología , Animales , Antioxidantes/química , Encéfalo/metabolismo , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Femenino , Estructura Molecular , Trastornos Neurocognitivos/metabolismo , Trastornos Neurocognitivos/patología , Óxidos de Nitrógeno/química , Ratas , Ratas Sprague-Dawley
18.
Am J Physiol Lung Cell Mol Physiol ; 317(3): L424-L430, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31364371

RESUMEN

Air pollution is a ubiquitous problem and comprises gaseous and particulate matter (PM). Epidemiological studies have clearly shown that exposure to PM is associated with impaired lung function and the development of lung diseases, such as chronic obstructive pulmonary disease and asthma. To understand the mechanisms involved, animal models are often used. However, the majority of such models represent high levels of exposure and are not representative of the exposure levels in less polluted countries, such as Australia. Therefore, in this study, we aimed to determine whether low dose PM10 exposure has any detrimental effect on the lungs. Mice were intranasally exposed to saline or traffic-related PM10 (1µg or 5µg/day) for 3 wk. Bronchoalveolar lavage (BAL) and lung tissue were analyzed. PM10 at 1 µg did not significantly affect inflammatory and mitochondrial markers. At 5 µg, PM10 exposure increased lymphocytes and macrophages in BAL fluid. Increased NACHT, LRR and PYD domains-containing protein 3 (NLRP3) and IL-1ß production occurred following PM10 exposure. PM10 (5 µg) exposure reduced mitochondrial antioxidant manganese superoxide (antioxidant defense system) and mitochondrial fusion marker (OPA-1), while it increased fission marker (Drp-1). Autophagy marker light-chain 3 microtubule-associated protein (LC3)-II and phosphorylated-AMPK were reduced, and apoptosis marker (caspase 3) was increased. No significant change of remodeling markers was observed. In conclusion, a subchronic low-level exposure to PM can have an adverse effect on lung health, which should be taken into consideration for the planning of roads and residential buildings.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Pulmón/metabolismo , Material Particulado/efectos adversos , Neumonía/complicaciones , Animales , Líquido del Lavado Bronquioalveolar/citología , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Neumonía/metabolismo
19.
Nutrients ; 11(7)2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31330878

RESUMEN

Maternal smoking leads to glucose and lipid metabolic disorders and hepatic damage in the offspring, potentially due to mitochondrial oxidative stress. Mitoquinone mesylate (MitoQ) is a mitochondrial targeted antioxidant with high bioavailability. This study aimed to examine the impact of maternal cigarette smoke exposure (SE) on offspring's metabolic profile and hepatic damage, and whether maternal MitoQ supplementation during gestation can affect these changes. Female Balb/c mice (eight weeks) were either exposed to air or SE for six weeks prior to mating and throughout gestation and lactation. A subset of the SE dams were supplied with MitoQ in the drinking water (500 µmol/L) during gestation and lactation. Intraperitoneal glucose tolerance test was performed in the male offspring at 12 weeks and the livers and plasma were collected at 13 weeks. Maternal SE induced glucose intolerance, hepatic steatosis, mitochondrial oxidative stress and related damage in the adult offspring. Maternal MitoQ supplementation reduced hepatic mitochondrial oxidative stress and improved markers of mitophagy and mitochondrial biogenesis. This may restore hepatic mitochondrial health and was associated with an amelioration of glucose intolerance, hepatic steatosis and pathological changes induced by maternal SE. MitoQ supplementation may potentially prevent metabolic dysfunction and hepatic pathology induced by intrauterine SE.


Asunto(s)
Hígado Graso/inducido químicamente , Exposición Materna , Síndrome Metabólico/inducido químicamente , Compuestos Organofosforados/farmacología , Contaminación por Humo de Tabaco/efectos adversos , Ubiquinona/análogos & derivados , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Femenino , Lactancia , Lipidómica , Masculino , Ratones , Ratones Endogámicos BALB C , Mitocondrias Hepáticas/fisiología , Compuestos Organofosforados/administración & dosificación , Estrés Oxidativo , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ubiquinona/administración & dosificación , Ubiquinona/farmacología
20.
Biomed Pharmacother ; 109: 1785-1792, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30551432

RESUMEN

In the recent years, much attention has been focused on identifying bioactive compounds from medicinal plants that could be employed in therapeutics, which is attributed to their potent pharmacological actions and better toxicological profile. One such example that has come into the light with considerable interest is the pentacyclic triterpenoid, celastrol, which has been found to provide substantial therapeutic properties in a variety of diseases. In an effort to further accelerate its potential to be utilized in clinical practice in the future; along with advancing technologies in the field of drug discovery and development, different researchers have been investigating on the various mechanisms and immunological targets of celastrol that underlie its broad spectrum of pharmacological properties. In this review, we have collated the various research findings related to the molecular modulators responsible for different pharmacological activities shown by celastrol. Our review will be of interest to the herbal, biological, molecular scientist and by providing a quick snapshot about celastrol giving a new direction in the area of herbal drug discovery and development.


Asunto(s)
Descubrimiento de Drogas/métodos , Tripterygium , Triterpenos/química , Triterpenos/uso terapéutico , Animales , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/uso terapéutico , Descubrimiento de Drogas/tendencias , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Triterpenos Pentacíclicos , Plantas Medicinales , Triterpenos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...