Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Public Health ; 10: 924316, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388287

RESUMEN

Background: Infectious diseases continue to burden populations in Malaysia, especially among rural communities where resources are limited and access to health care is difficult. Current epidemiological trends of several neglected tropical diseases in these populations are at present absent due to the lack of habitual and efficient surveillance. To date, various studies have explored the utility of serological multiplex beads to monitor numerous diseases simultaneously. We therefore applied this platform to assess population level exposure to six infectious diseases in Sabah, Malaysia. Furthermore, we concurrently investigated demographic and spatial risk factors that may be associated with exposure for each disease. Methods: This study was conducted in four districts of Northern Sabah in Malaysian Borneo, using an environmentally stratified, population-based cross-sectional serological survey targeted to determine risk factors for malaria. Samples were collected between September to December 2015, from 919 villages totaling 10,100 persons. IgG responses to twelve antigens of six diseases (lymphatic filariasis- Bm33, Bm14, BmR1, Wb123; strongyloides- NIE; toxoplasmosis-SAG2A; yaws- Rp17 and TmpA; trachoma- Pgp3, Ct694; and giardiasis- VSP3, VSP5) were measured using serological multiplex bead assays. Eight demographic risk factors and twelve environmental covariates were included in this study to better understand transmission in this community. Results: Seroprevalence of LF antigens included Bm33 (10.9%), Bm14+ BmR1 (3.5%), and Wb123 (1.7%). Seroprevalence of Strongyloides antigen NIE was 16.8%, for Toxoplasma antigen SAG2A was 29.9%, and Giardia antigens GVSP3 + GVSP5 was 23.2%. Seroprevalence estimates for yaws Rp17 was 4.91%, for TmpA was 4.81%, and for combined seropositivity to both antigens was 1.2%. Seroprevalence estimates for trachoma Pgp3 + Ct694 were 4.5%. Age was a significant risk factors consistent among all antigens assessed, while other risk factors varied among the different antigens. Spatial heterogeneity of seroprevalence was observed more prominently in lymphatic filariasis and toxoplasmosis. Conclusions: Multiplex bead assays can be used to assess serological responses to numerous pathogens simultaneously to support infectious disease surveillance in rural communities, especially where prevalences estimates are lacking for neglected tropical diseases. Demographic and spatial data collected alongside serosurveys can prove useful in identifying risk factors associated with exposure and geographic distribution of transmission.


Asunto(s)
Enfermedades Transmisibles , Filariasis Linfática , Toxoplasmosis , Tracoma , Buba , Humanos , Estudios Seroepidemiológicos , Malasia/epidemiología , Estudios Transversales , Toxoplasmosis/epidemiología , Factores de Riesgo
2.
J Infect Dis ; 216(11): 1425-1433, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-28968877

RESUMEN

Background: Persistent hotspots have been described after mass drug administration (MDA) for the control of schistosomiasis, but they have not been studied during the course of a multiyear MDA program. Methods: In data from a 5-year study of school-based and village-wide preventive chemotherapy strategies for Schistosoma mansoni, spatial scan statistics were used to find infection hotspots in 3 populations: 5- to 8-year-olds, 9- to 12-year-olds, and adults. Negative binomial regression was used to analyze changes from baseline, and receiver operating characteristic analyses were used to predict which villages would reach prevalence and intensity endpoints. Results: We identified a persistent hotspot, not associated with study arm, where S. mansoni infection prevalence and intensity did not decrease as much as in villages outside the hotspot. Significant differences from baseline were realized after 1 year of MDA: we did not identify factors that moderated this relationship. Villages meeting specified endpoints at year 5 were predicted from prior year data with moderately high sensitivity and specificity. Conclusions: The MDA strategies were less effective at reducing prevalence and intensity in the hotspot compared with other villages. Villages that reached year 5 endpoints could be detected earlier, which may provide the opportunity to amend intervention strategies.


Asunto(s)
Praziquantel/uso terapéutico , Schistosoma mansoni/efectos de los fármacos , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/epidemiología , Adulto , Animales , Niño , Preescolar , Estudios Transversales , Mapeo Geográfico , Humanos , Kenia , Praziquantel/administración & dosificación , Prevalencia , Schistosoma mansoni/patogenicidad , Esquistosomiasis/tratamiento farmacológico , Instituciones Académicas , Topografía Médica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...