Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Mater ; 36(4): 1908-1918, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38533450

RESUMEN

AMX Zintl compounds, crystallizing in several closely related layered structures, have recently garnered attention due to their exciting thermoelectric properties. In this study, we show that orthorhombic CaAgSb can be alloyed with hexagonal CaAgBi to achieve a solid solution with a structural transformation at x ∼ 0.8. This transition can be seen as a switch from three-dimensional (3D) to two-dimensional (2D) covalent bonding in which the interlayer M-X bond distances expand while the in-plane M-X distances contract. Measurements of the elastic moduli reveal that CaAgSb1-xBix becomes softer with increasing Bi content, with the exception of a steplike 10% stiffening observed at the 3D-to-2D phase transition. Thermoelectric transport measurements reveal promising Hall mobility and a peak zT of 0.47 at 620 K for intrinsic CaAgSb, which is higher than those in previous reports for unmodified CaAgSb. However, alloying with Bi was found to increase the hole concentration beyond the optimal value, effectively lowering the zT. Interestingly, analysis of the thermal conductivity and electrical conductivity suggests that the Bi-rich alloys are low Lorenz-number (L) materials, with estimated values of L well below the nondegenerate limit of L = 1.5 × 10-8 W Ω K-2, in spite of the metallic-like transport properties. A low Lorenz number decouples lattice and electronic thermal conductivities, providing greater flexibility for enhancing thermoelectric properties.

2.
Angew Chem Int Ed Engl ; 62(29): e202301176, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37143187

RESUMEN

AMX compounds with the ZrBeSi structure tolerate a vacancy concentration of up to 50 % on the M-site in the planar MX-layers. Here, we investigate the impact of vacancies on the thermal and electronic properties across the full EuCu1-x Zn0.5x Sb solid solution. The transition from a fully-occupied honeycomb layer (EuCuSb) to one with a quarter of the atoms missing (EuZn0.5 Sb) leads to non-linear bond expansion in the honeycomb layer, increasing atomic displacement parameters on the M and Sb-sites, and significant lattice softening. This, combined with a rapid increase in point defect scattering, causes the lattice thermal conductivity to decrease from 3 to 0.5 W mK-1 at 300 K. The effect of vacancies on the electronic properties is more nuanced; we see a small increase in effective mass, large increase in band gap, and decrease in carrier concentration. Ultimately, the maximum zT increases from 0.09 to 0.7 as we go from EuCuSb to EuZn0.5 Sb.

3.
Mater Horiz ; 8(1): 209-215, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34821299

RESUMEN

Accurate density functional theory calculations of the interrelated properties of thermoelectric materials entail high computational cost, especially as crystal structures increase in complexity and size. New methods involving ab initio scattering and transport (AMSET) and compressive sensing lattice dynamics are used to compute the transport properties of quaternary CaAl2Si2-type rare-earth phosphides RECuZnP2 (RE = Pr, Nd, Er), which were identified to be promising thermoelectrics from high-throughput screening of 20 000 disordered compounds. Experimental measurements of the transport properties agree well with the computed values. Compounds with stiff bulk moduli (>80 GPa) and high speeds of sound (>3500 m s-1) such as RECuZnP2 are typically dismissed as thermoelectric materials because they are expected to exhibit high lattice thermal conductivity. However, RECuZnP2 exhibits not only low electrical resistivity, but also low lattice thermal conductivity (∼1 W m-1 K-1). Contrary to prior assumptions, polar-optical phonon scattering was revealed by AMSET to be the primary mechanism limiting the electronic mobility of these compounds, raising questions about existing assumptions of scattering mechanisms in this class of thermoelectric materials. The resulting thermoelectric performance (zT of 0.5 for ErCuZnP2 at 800 K) is among the best observed in phosphides and can likely be improved with further optimization.

4.
J Phys Condens Matter ; 27(1): 015801, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25479002

RESUMEN

The Zintl phase Sr5In2Sb6 is isostructural with Ca5In2Sb6-a promising thermoelectric material with a peak zT of 0.7 when the carrier concentration is optimized by doping. Density functional calculations for Sr5In2Sb6 reveal a decreased energy gap and decreased valence band effective mass relative to the Ca analog. Chemical bonding analysis using the electron localizability indicator was found to support the Zintl bonding scheme for this structure type. High temperature transport measurements of the complete Ca(5-x)Sr(x)In2Sb6 solid solution were used to investigate the influence of the cation site on the electronic and thermal properties of A5In2Sb6 compounds. Sr was shown to be fully miscible on the Ca site. The higher density of the Sr analog leads to a slight reduction in lattice thermal conductivity relative to Ca5In2Sb6, and, as expected, the solid solution samples have significantly reduced lattice thermal conductivities relative to the end member compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...