Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Am Chem Soc ; 146(10): 6926-6935, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38430200

RESUMEN

G-quadruplex (G4) DNA structures are prevalent secondary DNA structures implicated in fundamental cellular functions, such as replication and transcription. Furthermore, G4 structures are directly correlated to human diseases such as cancer and have been highlighted as promising therapeutic targets for their ability to regulate disease-causing genes, e.g., oncogenes. Small molecules that bind and stabilize these structures are thus valuable from a therapeutic perspective and helpful in studying the biological functions of the G4 structures. However, there are hundreds of thousands of G4 DNA motifs in the human genome, and a long-standing problem in the field is how to achieve specificity among these different G4 structures. Here, we developed a strategy to selectively target an individual G4 DNA structure. The strategy is based on a ligand that binds and stabilizes G4s without selectivity, conjugated to a guide oligonucleotide, that specifically directs the G4-Ligand-conjugated oligo (GL-O) to the single target G4 structure. By employing various biophysical and biochemical techniques, we show that the developed method enables the targeting of a unique, specific G4 structure without impacting other off-target G4 formations. Considering the vast amount of G4s in the human genome, this represents a promising strategy to study the presence and functions of individual G4s but may also hold potential as a future therapeutic modality.


Asunto(s)
ADN , G-Cuádruplex , Humanos , Ligandos , ADN/química , Oligonucleótidos
3.
J Phys Chem Lett ; 14(7): 1862-1869, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36779779

RESUMEN

Molecular self-assembly is a powerful tool for the development of functional nanostructures with adaptive optical properties. However, in aqueous solution, the hydrophobic effects in the monomeric units often afford supramolecular architectures with typical side-by-side π-stacking arrangement with compromised emissive properties. Here, we report on the role of parallel DNA guanine quadruplexes (G4s) as supramolecular disaggregating-capture systems capable of coordinating a zwitterionic fluorine-boron-based dye and promoting activation of its fluorescence signal. The dye's high binding affinity for parallel G4s compared to nonparallel topologies leads to a selective disassembly of the dye's supramolecular state upon contact with parallel G4s. This results in a strong and selective disaggregation-induced emission that signals the presence of parallel G4s observable by the naked eye and inside cells. The molecular recognition strategy reported here will be useful for a multitude of affinity-based applications with potential in sensing and imaging systems.


Asunto(s)
G-Cuádruplex , Genoma Mitocondrial , Colorantes Fluorescentes/química , Boro , Flúor , ADN/química
4.
Eur J Med Chem ; 248: 115103, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36645982

RESUMEN

G-quadruplex (G4) DNA structures are involved in central biological processes such as DNA replication and transcription. These DNA structures are enriched in promotor regions of oncogenes and are thus promising as novel gene silencing therapeutic targets that can be used to regulate expression of oncoproteins and in particular those that has proven hard to drug with conventional strategies. G4 DNA structures in general have a well-defined and hydrophobic binding area that also is very flat and featureless and there are ample examples of G4 ligands but their further progression towards drug development is limited. In this study, we use synthetic organic chemistry to equip a drug-like and low molecular weight central fragment with different side chains and evaluate how this affect the compound's selectivity and ability to bind and stabilize G4 DNA. Furthermore, we study the binding interactions of the compounds and connect the experimental observations with the compound's structural conformations and electrostatic potentials to understand the basis for the observed improvements. Finally, we evaluate the top candidates' ability to selectively reduce cancer cell growth in a 3D co-culture model of pancreatic cancer which show that this is a powerful approach to generate highly active and selective low molecular weight G4 ligands with a promising therapeutic window.


Asunto(s)
G-Cuádruplex , Ligandos , ADN/metabolismo , Oncogenes , Pirimidinas
5.
J Immunol Methods ; 511: 113386, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36384199

RESUMEN

Serotype-specific diagnosis of bluetongue virus (BTV) is necessary for sero-surveillance and taking effective control measures. The VP2 is the major serotype determining protein and BTV-1 is the most predominant serotype in India. In the present study, an indirect ELISA (i-ELISA) was optimized for the detection of serotype-specific antibody against BTV-1 serotype. The VP2 protein of BTV-1 was expressed in a prokaryotic expression system and used to optimize i-ELISA to detect VP2 antibodies of BTV-1 in serum samples of both small and large ruminants. Serum samples (n = 363) classified as positive and negative for antibodies to BTV-1 by serum neutralization test (SNT) and also positive and negative for BTV antibodies by c-ELSIA kit (VMRD, USA) were used to determine the cut-off value, diagnostic sensitivity (DSn), and diagnostic specificity (D-Sp) using receiver operating characteristic (ROC) analysis. The percent positivity (PP) value >30.10% was accepted as the cut-off for i-ELISA at which DSn of 99.52% and D-Sp of 99.35% was observed with a 95% confidence interval. Further, there was no cross-reactivity with other available BTV serotypes in the country. The study indicated serotype-specific i-ELISA is sensitive, specific and suitable alternative to tedious SNT method for determining serotype. The assay will also help in the serotype-specific epidemiological studies and implementation of future control strategies including vaccination and selection of suitable serotype as a vaccine candidate.


Asunto(s)
Virus de la Lengua Azul , Virus de la Lengua Azul/genética , India
6.
Dalton Trans ; 51(16): 6436-6447, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35388858

RESUMEN

The development of metal-based multimodal imaging probes is a highly challenging field in coordination chemistry. In this context, we have developed a bifunctional hexadentate tripodal ligand (H3L2) with three 3,4-HOPO moieties attached to a flexible tetrahedral carbon bearing a functionalizable nitro group. Complexes formed with different metal ions have potential interest for diagnostic applications, namely magnetic resonance imaging (MRI) and positron emission tomography (PET). The capacity of the ligand to coordinate GdIII and GaIII was studied and the thermodynamic stability constants of the respective complexes were determined by potentiometry and spectrophotometry. The ligand forms stable 1 : 1 ML complexes though with considerably higher affinity for GaIII than for GdIII (pGa = 26.2 and pGd = 14.3 at pH 7). The molecular dynamics simulations of the GdIII complex indicate that two water molecules can coordinate the metal ion, thus providing efficient paramagnetic enhancement of water proton relaxation. The relaxation and the water exchange properties of the GdIII chelate, assessed by a combined 17O NMR and 1H NMRD study, showed associative activated water exchange with a relatively low rate constant, k298ex = (0.82 ± 0.11) × 107 s-1, and some aggregation tendency. Biodistribution studies of the 67Ga-L2 complex suggested good in vivo stability and quick renal clearance. Further anchoring of this ligand with specific biotargeting moieties might open future prospectives for applications of labelled conjugates in both MRI and 68Ga-PET diagnostic imaging.


Asunto(s)
Medios de Contraste , Gadolinio , Medios de Contraste/química , Gadolinio/química , Ligandos , Imagen por Resonancia Magnética/métodos , Protones , Distribución Tisular , Agua/química
7.
Molecules ; 26(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34885859

RESUMEN

The binding ability of five bifunctional 3-hydroxy-4-pyridinones towards Cu2+ and Fe3+ was studied by means of potentiometric and UV-Vis spectrophotometric measurements carried out at I = 0.15 mol L-1 in NaCl(aq),T = 298.15 K and 310.15 K. The data treatments allowed us to determine speciation schemes featured by metal-ligand species with different stoichiometry and stability, owing to the various functional groups present in the 3-hydroxy-4-pyridinones structures, which could potentially participate in the metal complexation, and in the Cu2+ and Fe3+ behaviour in aqueous solution. Furthermore, the sequestering ability and metal chelating affinity of the ligands were investigated by the determination of pL0.5 and pM parameters at different pH conditions. Finally, a comparison between the Cu2+ and Fe3+/3-hydroxy-4-pyridinones data herein presented with those already reported in the literature on the interaction of Zn2+ and Al3+ with the same ligands showed that, from the thermodynamic point of view, the 3-hydroxy-4-pyridinones are particularly selective towards Fe3+ and could therefore be considered promising iron-chelating agents, also avoiding the possibility of competition, and eventually the depletion, of essential metal cations of biological and environmental relevance, such as Cu2+ and Zn2+.

8.
J Immunol Methods ; 499: 113166, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34653504

RESUMEN

Bluetongue virus (BTV), the causative agent of bluetongue disease infects many domestic and wild ruminants. In the present study, colloidal gold nanoparticle-based lateral flow immunochromatography assay (LFIA) was developed to detect the group-specific antibodies to BTV in serum samples of sheep, goats, cattle, and camel. The recombinant VP7 protein of BTV conjugated to colloidal gold nanoparticles (GNPs) was used as a detector reagent. Recombinant streptococcal protein G and monoclonal antibody to BTV group-specific antigen were immobilized as the test and the control line, respectively on a nitrocellulose membrane. The protein G could capture the specific antibodies to BTV present in the serum of multiple ruminant species susceptible to BTV in a common test format and could eliminate the requirement of multiple anti-species antibodies. Upon addition of serum sample, GNP-rVP7 protein-serum complex migrated laterally onto the strip via capillary action and results were analyzed based on appearance of red colour band at test and control line. Serum samples (n = 481) of sheep, goats, cattle, and camel segregated as positive and negative by the commercial competitive-ELISA (c-ELISA) kit were tested in the fabricated LFIA strips to analyze the performance of the assay. In comparison with c-ELISA, the relative diagnostic sensitivity (DSn) of 95.2% with 91.6-97.6 (95%)) confidence interval and relative diagnostic specificity (DSp) of 99.6% 97.8-100.0 (95%) confidence interval were obtained for the optimized LFIA. The agreement between the LFIA and the c-ELISA was excellent as indicated by the kappa coefficient value of 0.949 (SE = 0.0142) with 0.9219 to 0.9779 (95%) confidence interval. The recombinant protein G based LFIA is a sensitive, specific, rapid, one-step test that can be used in the field or poorly equipped laboratories for serological diagnosis and serosurveillance of bluetongue in multiple susceptible species.


Asunto(s)
Anticuerpos/sangre , Inmunoensayo , Proteínas del Núcleo Viral/inmunología , Animales , Anticuerpos/inmunología , Camelus , Bovinos , Cabras , Cobayas , Conejos
9.
ACS Chem Biol ; 16(8): 1365-1376, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34328300

RESUMEN

G-quadruplex (G4) DNA structures are widespread in the human genome and are implicated in biologically important processes such as telomere maintenance, gene regulation, and DNA replication. Guanine-rich sequences with potential to form G4 structures are prevalent in the promoter regions of oncogenes, and G4 sites are now considered as attractive targets for anticancer therapies. However, there are very few reports of small "druglike" optical G4 reporters that are easily accessible through one-step synthesis and that are capable of discriminating between different G4 topologies. Here, we present a small water-soluble light-up fluorescent probe that features a minimalistic amidinocoumarin-based molecular scaffold that selectively targets parallel G4 structures over antiparallel and non-G4 structures. We showed that this biocompatible ligand is able to selectively stabilize the G4 template resulting in slower DNA synthesis. By tracking individual DNA molecules, we demonstrated that the G4-stabilizing ligand perturbs DNA replication in cancer cells, resulting in decreased cell viability. Moreover, the fast-cellular entry of the probe enabled detection of nucleolar G4 structures in living cells. Finally, insights gained from the structure-activity relationships of the probe suggest the basis for the recognition of parallel G4s, opening up new avenues for the design of new biocompatible G4-specific small molecules for G4-driven theranostic applications.


Asunto(s)
Amidinas/química , Cumarinas/química , ADN/análisis , Colorantes Fluorescentes/química , G-Cuádruplex , Amidinas/síntesis química , Amidinas/metabolismo , Supervivencia Celular/efectos de los fármacos , Cumarinas/síntesis química , Cumarinas/metabolismo , ADN/genética , ADN/metabolismo , Replicación del ADN/efectos de los fármacos , Diseño de Fármacos , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Células HeLa , Humanos , Límite de Detección , Microscopía Confocal , Microscopía Fluorescente , Estructura Molecular , Relación Estructura-Actividad
10.
Virus Genes ; 57(4): 369-379, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34120252

RESUMEN

The smallest polycistronic dsRNA segment-10 (S10) of bluetongue virus (BTV) encodes NS3/3A and putative NS5. The S10 sequence data of 46 Indian BTV field isolates obtained between 1985 and 2011 were determined and compared with the cognate sequences of global BTV strains. The largest ORF on S10 encodes NS3 (229 aa) and an amino-terminal truncated form of the protein (NS3A) and a putative NS5 (50-59 aa) due to alternate translation initiation site. The overall mean distance of the global NS3 was 0.1106 and 0.0269 at nt and deduced aa sequence, respectively. The global BTV strains formed four major clusters. The major cluster of Indian BTV strains was closely related to the viruses reported from Australia and China. A minor sub-cluster of Indian BTV strains were closely related to the USA strains and a few of the Indian strains were similar to the South African reference and vaccine strains. The global trait association of phylogenetic structure indicates the evolution of the global BTV S10 was not homogenous but rather represents a moderate level of geographical divergence. There was no evidence of an association between the virus and the host species, suggesting a random spread of the viruses. Conflicting selection pressure on the alternate coding sequences of the S10 was evident where NS3/3A might have evolved through strong purifying (negative) selection and NS5 through a positive selection. The presence of multiple positively selected codons on the putative NS5 may be advantageous for adaptation of the virus though their precise role is unknown.


Asunto(s)
Virus de la Lengua Azul/genética , Lengua Azul/genética , ARN Bicatenario/genética , Proteínas no Estructurales Virales/genética , Animales , Australia/epidemiología , Lengua Azul/patología , Lengua Azul/virología , Virus de la Lengua Azul/clasificación , China/epidemiología , Virus ARN Bicatenario/clasificación , Virus ARN Bicatenario/genética , Variación Genética/genética , Humanos , India/epidemiología , Filogenia , Análisis de Secuencia de ADN , Ovinos/virología
11.
Nucleic Acids Res ; 48(19): 10998-11015, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33045725

RESUMEN

G-quadruplex (G4) structures are stable non-canonical DNA structures that are implicated in the regulation of many cellular pathways. We show here that the G4-stabilizing compound PhenDC3 causes growth defects in Schizosaccharomyces pombe cells, especially during S-phase in synchronized cultures. By visualizing individual DNA molecules, we observed shorter DNA fragments of newly replicated DNA in the PhenDC3-treated cells, suggesting that PhenDC3 impedes replication fork progression. Furthermore, a novel single DNA molecule damage assay revealed increased single-strand DNA lesions in the PhenDC3-treated cells. Moreover, chromatin immunoprecipitation showed enrichment of the leading-strand DNA polymerase at sites of predicted G4 structures, suggesting that these structures impede DNA replication. We tested a subset of these sites and showed that they form G4 structures, that they stall DNA synthesis in vitro and that they can be resolved by the breast cancer-associated Pif1 family helicases. Our results thus suggest that G4 structures occur in S. pombe and that stabilized/unresolved G4 structures are obstacles for the replication machinery. The increased levels of DNA damage might further highlight the association of the human Pif1 helicase with familial breast cancer and the onset of other human diseases connected to unresolved G4 structures.


Asunto(s)
Roturas del ADN de Cadena Simple , Replicación del ADN , ADN de Hongos/química , G-Cuádruplex , Schizosaccharomyces/genética , ADN Helicasas/fisiología , Compuestos de Anillos Fusionados/farmacología , Fase S , Proteínas de Schizosaccharomyces pombe/fisiología
12.
Nanoscale ; 12(24): 12950-12957, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32525170

RESUMEN

Direct and unambiguous evidence of the formation of G-quadruplexes (G4s) in human cells have shown their implication in several key biological events and has emphasized their role as important targets for small-molecule cancer therapeutics. Here, we report on the first example of a self-assembled molecular-rotor G4-binder able to discriminate between an extensive panel of G4 and non-G4 structures and to selectively light-up (up to 64-fold), bind (nanomolar range), and stabilize the c-MYC promoter G4 DNA. In particular, association with the c-MYC G4 triggers the disassembly of its supramolecular state (disaggregation-induced emission, DIE) and induces geometrical restrictions (motion-induced change in emission, MICE) leading to a significant enhancement of its emission yield. Moreover, this optical reporter is able to selectively stabilize the c-MYC G4 and inhibit DNA synthesis. Finally, by using confocal laser-scanning microscopy (CLSM) we show the ability of this compound to localize primarily in the subnuclear G4-rich compartments of cancer cells. This work provides a benchmark for the future design and development of a new generation of smart sequence-selective supramolecular G4-binders that combine outstanding sensing and stability properties, to be utilized in anti-cancer therapy.


Asunto(s)
G-Cuádruplex , ADN , Ligandos , Regiones Promotoras Genéticas
13.
Trop Anim Health Prod ; 52(5): 2715-2719, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32100170

RESUMEN

The presence of antibodies to bluetongue virus (BTV) and the viral antigen is reported recently from the Andaman and Nicobar Islands, a group of islands at the juncture of the Bay of Bengal and the Andaman Sea. A retrospective study was conducted to investigate the presence of neutralizing antibodies to different BTV serotypes in the seroconverted goats of the Islands. Thirty six samples out of 186 serum samples tested were selected on the basis of high antibody titre as predicted in an indirect ELISA. Each of the selected serum samples was used for neutralization of six BTV serotypes (BTV-1, BTV-2, BTV-9, BTV-10, BTV-16 and BTV-23), the most commonly reported serotypes in India. Out of 36 serum samples used in the neutralization study, neutralizing antibodies could be determined in 15 samples. The neutralizing antibodies to BTV-10 were found in more number of the serum samples followed by BTV-1, BTV-2 and BTV-23 and BTV-9 and BTV-16. Many of the serum samples could neutralize more than one BTV serotypes indicating possible widespread superinfections by multiple BTV serotypes in goats in the Islands. Majority of the serum samples used in the neutralization study could not neutralize any of the six BTV serotypes commonly reported from India indicating possible circulation of other BTV serotypes yet to confirm. The present study reveals circulation of multiple BTV serotypes in Andaman and Nicobar Islands where there was no such report available earlier. The findings are laudable as the baseline information for further investigations to identify and characterize the virus and competent vectors and for implementing appropriate suitable control strategies for bluetongue in the Islands and the nearby territories.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Virus de la Lengua Azul/inmunología , Cabras/inmunología , Animales , Antígenos Virales , Lengua Azul/virología , Virus de la Lengua Azul/genética , Ensayo de Inmunoadsorción Enzimática/veterinaria , India , Islas , Estudios Retrospectivos , Serogrupo
14.
J Am Chem Soc ; 142(6): 2876-2888, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31990532

RESUMEN

The signal transducer and activator of transcription 3 (STAT3) protein is a master regulator of most key hallmarks and enablers of cancer, including cell proliferation and the response to DNA damage. G-Quadruplex (G4) structures are four-stranded noncanonical DNA structures enriched at telomeres and oncogenes' promoters. In cancer cells, stabilization of G4 DNAs leads to replication stress and DNA damage accumulation and is therefore considered a promising target for oncotherapy. Here, we designed and synthesized novel quinazoline-based compounds that simultaneously and selectively affect these two well-recognized cancer targets, G4 DNA structures and the STAT3 protein. Using a combination of in vitro assays, NMR, and molecular dynamics simulations, we show that these small, uncharged compounds not only bind to the STAT3 protein but also stabilize G4 structures. In human cultured cells, the compounds inhibit phosphorylation-dependent activation of STAT3 without affecting the antiapoptotic factor STAT1 and cause increased formation of G4 structures, as revealed by the use of a G4 DNA-specific antibody. As a result, treated cells show slower DNA replication, DNA damage checkpoint activation, and an increased apoptotic rate. Importantly, cancer cells are more sensitive to these molecules compared to noncancerous cell lines. This is the first report of a promising class of compounds that not only targets the DNA damage cancer response machinery but also simultaneously inhibits the STAT3-induced cancer cell proliferation, demonstrating a novel approach in cancer therapy.


Asunto(s)
G-Cuádruplex , Neoplasias/patología , Quinazolinas/química , Factor de Transcripción STAT3/metabolismo , Muerte Celular , Humanos , Ligandos , Neoplasias/metabolismo
15.
Nucleic Acids Res ; 48(3): 1108-1119, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31912160

RESUMEN

G-quadruplex (G4) DNA structures are linked to key biological processes and human diseases. Small molecules that target specific G4 DNA structures and signal their presence would therefore be of great value as chemical research tools with potential to further advance towards diagnostic and therapeutic developments. However, the development of these types of specific compounds remain as a great challenge. In here, we have developed a compound with ability to specifically signal a certain c-MYC G4 DNA structure through a fluorescence light-up mechanism. Despite the compound's two binding sites on the G4 DNA structure, only one of them result in the fluorescence light-up effect. This G-tetrad selectivity proved to originate from a difference in flexibility that affected the binding affinity and tilt the compound out of the planar conformation required for the fluorescence light-up mechanism. The intertwined relation between the presented factors is likely the reason for the lack of examples using rational design to develop compounds with turn-on emission that specifically target certain G4 DNA structures. However, this study shows that it is indeed possible to develop such compounds and present insights into the molecular details of specific G4 DNA recognition and signaling to advance future studies of G4 biology.


Asunto(s)
ADN/química , Colorantes Fluorescentes , G-Cuádruplex , Bencimidazoles/química , Benzotiazoles/química , Colorantes Fluorescentes/química , Genes myc , Simulación de Dinámica Molecular
16.
J Enzyme Inhib Med Chem ; 35(1): 211-226, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31760822

RESUMEN

Pursuing the widespread interest on multi-target drugs to combat Alzheimer´s disease (AD), a new series of hybrids was designed and developed based on the repositioning of the well-known acetylcholinesterase (AChE) inhibitor, tacrine (TAC), by its coupling to benzofuran (BF) derivatives. The BF framework aims to endow the conjugate molecules with ability for inhibition of AChE (bimodal way) and of amyloid-beta peptide aggregation, besides providing metal (Fe, Cu) chelating ability and concomitant extra anti-oxidant activity, for the hybrids with hydroxyl substitution. The new TAC-BF conjugates showed very good activity for AChE inhibition (sub-micromolar range) and good capacity for the inhibition of self- and Cu-mediated Aß aggregation, with dependence on the linker size and substituent groups of each main moiety. Neuroprotective effects were also found for the compounds through viability assays of neuroblastoma cells, after Aß1-42 induced toxicity. Structure-activity relationship analysis provides insights on the best structural parameters, to take in consideration for future studies in view of potential applications in AD therapy.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Benzofuranos/farmacología , Inhibidores de la Colinesterasa/farmacología , Fármacos Neuroprotectores/farmacología , Tacrina/farmacología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Benzofuranos/química , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Electrophorus , Humanos , Modelos Moleculares , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Relación Estructura-Actividad , Tacrina/química
17.
Angew Chem Int Ed Engl ; 59(2): 896-902, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31644837

RESUMEN

The design of turn-on dyes with optical signals sensitive to the formation of supramolecular structures provides fascinating and underexplored opportunities for G-quadruplex (G4) DNA detection and characterization. Here, we show a new switching mechanism that relies on the recognition-driven disaggregation (on-signal) of an ultrabright coumarin-quinazoline conjugate. The synthesized probe selectively lights-up parallel G4 DNA structures via the disassembly of its supramolecular state, demonstrating outputs that are easily integrable into a label-free molecular logic system. Finally, our molecule preferentially stains the G4-rich nucleoli of cancer cells.


Asunto(s)
Técnicas Biosensibles/métodos , ADN/química , G-Cuádruplex , Espectrometría de Fluorescencia/métodos , Humanos
18.
Molecules ; 24(22)2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31726704

RESUMEN

The acid-base properties of two bifunctional 3-hydroxy-4-pyridinone ligands and their chelating capacity towards Zn2+, an essential bio-metal cation, were investigated in NaCl aqueous solutions by potentiometric, UV-Vis spectrophotometric, and 1H NMR spectroscopic titrations, carried out at 0.15 ≤ I/mol -1 ≤ 1.00 and 288.15 ≤ T/K ≤ 310.15. A study at I = 0.15 mol L-1 and T = 298.15 K was also performed for other three Zn2+/Lz- systems, with ligands belonging to the same family of compounds. The processing of experimental data allowed the determination of protonation and stability constants, which showed accordance with the data obtained from the different analytical techniques used, and with those reported in the literature for the same class of compounds. ESI-MS spectrometric measurements provided support for the formation of the different Zn2+/ligand species, while computational molecular simulations allowed information to be gained on the metal-ligand coordination. The dependence on ionic strength and the temperature of equilibrium constants were investigated by means of the extended Debye-Hückel model, the classical specific ion interaction theory, and the van't Hoff equations, respectively.


Asunto(s)
Concentración Osmolar , Piridonas/química , Temperatura , Zinc/química , Algoritmos , Cationes/química , Hidrólisis , Ligandos , Metales/química , Modelos Moleculares , Modelos Teóricos , Estructura Molecular , Termodinámica
19.
Dalton Trans ; 48(43): 16167-16183, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31577287

RESUMEN

Finding new multifunctional metal binders to be potentially used in diagnosis or therapy has been a subject of major challenge. Hydroxypyridinones have long been recognized as privileged chelating structures for the design of metal chelating drugs, especially towards hard metal ions, in view of their decorporation in metal overload disorders. Thus, pursuing our strategy of engineering new polydentate 3-hydroxy-4-pyridinones (3,4-HP) with extrafunctionalization capacity for sensing or targeting purposes, we report herein the synthesis and full characterization of a hexadentate (tris-3,4-HP) and a tetradentate (bis-3,4-HP) ligand, possessing three and two 3,4-HP arms N-attached to an aminomethanetrispropionic acid backbone, respectively. Thus, as compared with previously reported analogues, each ligand possesses an extra free amino group ready for further functionalization. Their chelating capacity towards Fe and Al was evaluated in aqueous solution, by potentiometric and spectroscopic techniques, and they proved to be strong sequestering agents for these metal ions without depletion of Zn, an essential biometal. Their excellent in vivo metal-decorporation capacity was also evidenced in mice injected with a radiotracer (67Ga) as an animal model of metal overload pathological situations. These findings provide encouragement for further ongoing extrafunctionalizations in view of several potential biomedical applications.

20.
Infect Genet Evol ; 76: 104071, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31627006

RESUMEN

Sheeppox and goatpox are two of the most important diseases associated with significant economic loss and impact on animal trade. In spite of the use of vaccines, outbreaks are being reported on several occasions. Therefore, deciphering the host specificity and virulence of sheeppox virus (SPPV) and goatpox virus (GTPV) is important in developing effective vaccines. It is opined that genes located in the terminal regions play a major role in determining host range and/or virulence. In the present study, nine isolates (6 GTPV and 3 SPPV; included both vaccine and virulent viruses) were genetically characterized by targeting 11 genes (7 host-range and 4 virulence genes) which are located in the terminal regions of capripoxviruses. In the genetic analyses, it was observed that there are several nucleotide and amino acid signatures which are specific for either SPPV or GTPV. However, surprisingly, none of the 11 genes could be able to differentiate the vaccine and field viruses of GTPV and SPPV. Our study indicates that the genes of the terminal regions may have a role in determining the host-specificity but the involvemet in determinatin of virulence/attenuation is not certain at least for the isolates used in the current study. Therefore, it is likely that some other genes located in terminal/central regions may also play a role in determination of virulence and pathogenesis which needs to be confirmed by whole-genome sequencing of several vaccine and virulent viruses.


Asunto(s)
Capripoxvirus/clasificación , Infecciones por Poxviridae/prevención & control , Proteínas Virales/genética , Vacunas Virales/genética , Animales , Capripoxvirus/genética , Capripoxvirus/patogenicidad , Chlorocebus aethiops , Cabras , Especificidad del Huésped , Filogenia , Infecciones por Poxviridae/inmunología , Análisis de Secuencia de ADN , Ovinos , Células Vero , Vacunas Virales/inmunología , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...