Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38948749

RESUMEN

Binge drinking is common among adolescents despite mounting evidence linking it to various adverse health outcomes that includes heightened pain perception. The prelimbic (PrL) cortex is vulnerable to insults from adolescent alcohol exposure and receives input from the basolateral amygdala (BLA) while sending projections to the ventrolateral periaqueductal gray (vlPAG) - two brain regions implicated in nociception. In this study, adolescent intermittent ethanol (AIE) exposure was carried out in male and female rats using a vapor inhalation procedure. Mechanical and thermal sensitivity, assessed throughout adolescence and into adulthood, revealed that AIE exposure induced protracted mechanical allodynia in both male and female rats. However, a carrageenan inflammatory paw pain challenge in adult rats revealed that AIE did not further augment carrageenan-induced hyperalgesia. To investigate synaptic function at BLA inputs onto defined populations of PrL neurons, retrobeads and viral labelling were combined with optogenetics and slice electrophysiology. Recordings from retrobead labelled cells in the PrL revealed AIE reduced BLA driven feedforward inhibition of neurons projecting from the PrL to the vlPAG (PrLPAG neurons), resulting in augmented excitation/inhibition (E/I) balance and increased intrinsic excitability. Consistent with this finding, recordings from virally tagged PrL parvalbumin interneurons (PVINs) demonstrated that AIE exposure reduced both E/I balance at BLA inputs onto PVINs and PVIN intrinsic excitability when assessed in adulthood. These findings provide compelling evidence that AIE and acute pain alter synaptic function and intrinsic excitability within a prefrontal nociceptive circuit.

2.
bioRxiv ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38915577

RESUMEN

Dependence is a hallmark of alcohol use disorder characterized by excessive alcohol intake and withdrawal symptoms. The central nucleus of the amygdala (CeA) is a key brain structure underlying the synaptic and behavioral consequences of ethanol dependence. While accumulating evidence suggests that astrocytes regulate synaptic transmission and behavior, there is a limited understanding of the role astrocytes play in ethanol dependence. The present study used a combination of viral labeling, super resolution confocal microscopy, 3D image analysis, and slice electrophysiology to determine the effects of chronic intermittent ethanol (CIE) exposure on astrocyte plasticity in the CeA. During withdrawal from CIE exposure, we observed increased GABA transmission, an upregulation in astrocytic GAT3 levels, and an increased proximity of astrocyte processes near CeA synapses. Furthermore, GAT3 levels and synaptic proximity were positively associated with voluntary ethanol drinking in dependent rats. Slice electrophysiology confirmed that the upregulation in astrocytic GAT3 levels was functional, as CIE exposure unmasked a GAT3-sensitive tonic GABA current in the CeA. A causal role for astrocytic GAT3 in ethanol dependence was assessed using viral-mediated GAT3 overexpression and knockdown approaches. However, GAT3 knockdown or overexpression had no effect on somatic withdrawal symptoms, dependence-escalated ethanol intake, aversion-resistant drinking, or post-dependent ethanol drinking in male or female rats. Moreover, intra-CeA pharmacological inhibition of GAT3 also did not alter dependent ethanol drinking. Together, these findings indicate that ethanol dependence induces GABAergic dysregulation and astrocyte plasticity in the CeA. However, astrocytic GAT3 does not appear necessary for the drinking related phenotypes associated with dependence.

3.
Neuropsychopharmacology ; 48(10): 1455-1464, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37221326

RESUMEN

The rostromedial tegmental nucleus (RMTg) encodes negative reward prediction error (RPE) and plays an important role in guiding behavioral responding to aversive stimuli. Previous research has focused on regulation of RMTg activity by the lateral habenula despite studies revealing RMTg afferents from other regions including the frontal cortex. The current study provides a detailed anatomical and functional analysis of cortical input to the RMTg of male rats. Retrograde tracing uncovered dense cortical input to the RMTg spanning the medial prefrontal cortex, the orbitofrontal cortex and anterior insular cortex. Afferents were most dense in the dorsomedial subregion of the PFC (dmPFC), an area that is also implicated in both RPE signaling and aversive responding. RMTg-projecting dmPFC neurons originate in layer V, are glutamatergic, and collateralize to select brain regions. In-situ mRNA hybridization revealed that neurons in this circuit are predominantly D1 receptor-expressing with a high degree of D2 receptor colocalization. Consistent with cFos induction in this neural circuit during exposure to foot shock and shock-predictive cues, optogenetic stimulation of dmPFC terminals in the RMTg drove avoidance. Lastly, acute slice electrophysiology and morphological studies revealed that exposure to repeated foot shock resulted in significant physiological and structural changes consistent with a loss of top-down modulation of RMTg-mediated signaling. Altogether, these data reveal the presence of a prominent cortico-subcortical projection involved in adaptive behavioral responding to aversive stimuli such as foot shock and provide a foundation for future work aimed at exploring alterations in circuit function in diseases characterized by deficits in cognitive control over reward and aversion.


Asunto(s)
Neuronas , Tegmento Mesencefálico , Ratas , Masculino , Animales , Tegmento Mesencefálico/fisiología , Neuronas/fisiología , Núcleo Celular , Área Tegmental Ventral/fisiología
4.
Biochem Biophys Res Commun ; 644: 155-161, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36652767

RESUMEN

Denervated skeletal muscles show decreased Akt activity and phosphorylation, resulting in atrophy. Akt inhibits downstream transcription of atrophy-associated ubiquitin ligases like muscle ring-finger protein 1 (MuRF-1). In addition, reduced Akt signaling contributes to aberrant protein synthesis in muscles. In ALS mice, we recently found that carboxyl-terminator modulator protein (CTMP) expression is increased and correlated with reduced Akt signaling in atrophic skeletal muscle. CTMP has also been implicated in promoting muscle degeneration and catabolism in an in vitro muscle atrophy model. The present study examined whether sciatic nerve injury (SNI) stimulated CTMP expression in denervated skeletal muscle during muscle atrophy. We hypothesized that CTMP deficiency would reduce neurogenic atrophy and reverse Akt signaling downregulation. Compared to the unaffected contralateral muscle, wild-type (WT) gastrocnemius muscle had a significant increase in CTMP (p < 0.05). Furthermore, denervated CTMP knockout (CTMP-KO) gastrocnemius weighed more than WT muscle (p < 0.05). Denervated CTMP-KO gastrocnemius also showed higher Akt and downstream glycogen synthase kinase 3ß (GSK3ß) phosphorylation compared to WT muscle (p < 0.05) as well as ribosomal proteins S6 and 4E-BP1 phosphorylation (p < 0.001 and p < 0.05, respectively). Moreover, CTMP-KO mice showed significantly lower levels of E3 ubiquitin ligase MuRF-1 and myostatin than WT muscle (p < 0.05). Our findings suggest that CTMP is essential to muscle atrophy after denervation and it may act by reducing Akt signaling, protein synthesis, and increasing myocellular catabolism.


Asunto(s)
Atrofia Muscular , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Desnervación , Proteínas Portadoras/metabolismo , Palmitoil-CoA Hidrolasa/metabolismo
5.
Neuropsychopharmacology ; 47(12): 2123-2131, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35717465

RESUMEN

The lateral habenula (LHb) is an epithalamic nuclei that has been shown to signal the aversive properties of ethanol. The present study tested the hypothesis that activity of the LHb is required for the acquisition and/or expression of dependence-induced escalation of ethanol drinking and somatic withdrawal symptoms. Male Sprague-Dawley rats completed 4 weeks of baseline drinking under a standard intermittent access two-bottle choice (2BC) paradigm before undergoing 2 weeks of daily chronic intermittent ethanol (CIE) via vapor inhalation. Following this CIE exposure period, rats resumed 2BC drinking to assess dependence-induced changes in voluntary ethanol consumption. CIE exposed rats exhibited a significant increase in ethanol drinking that was associated with high levels of blood alcohol and a reduction in somatic symptoms of ethanol withdrawal. However, despite robust cFos activation in the LHb during ethanol withdrawal, chemogenetic inhibition of the LHb did not alter either ethanol consumption or somatic signs of ethanol withdrawal. Consistent with this observation, ablating LHb outputs via electrolytic lesions of the fasciculus retroflexus (FR) did not alter the acquisition of somatic withdrawal symptoms or escalation of ethanol drinking in CIE-exposed rats. The LHb controls activity of the rostromedial tegmental nucleus (RMTg), a midbrain nucleus activated by aversive experiences including ethanol withdrawal. During ethanol withdrawal, both FR lesioned and sham control rats exhibited similar cFos activation in the RMTg, suggesting that RMTg activation during ethanol withdrawal does not require LHb input. These data suggest that, at least in male rats, the LHb is not necessary for the acquisition or expression of escalation of ethanol consumption or expression of somatic symptoms of ethanol withdrawal. Overall, our findings provide evidence that the LHb is dispensable for some of the negative consequences of ethanol withdrawal.


Asunto(s)
Alcoholismo , Habénula , Síntomas sin Explicación Médica , Síndrome de Abstinencia a Sustancias , Consumo de Bebidas Alcohólicas , Alcoholismo/metabolismo , Animales , Etanol , Habénula/metabolismo , Masculino , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Síndrome de Abstinencia a Sustancias/metabolismo
6.
Sci Rep ; 12(1): 6595, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35449195

RESUMEN

Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) have become a premier neuroscience research tool for enabling reversible manipulations of cellular activity following experimenter-controlled delivery of a DREADD-specific ligand. However, several DREADD ligands, e.g., clozapine-N-oxide (CNO), have metabolic and off-target effects that may confound experimental findings. New DREADD ligands aim to reduce metabolic and potential off-target effects while maintaining strong efficacy for the designer receptors. Recently a novel DREADD ligand, deschloroclozapine (DCZ), was shown to induce chemogenetic-mediated cellular and behavioral effects in mice and monkeys without detectable side effects. The goal of the present study was to examine the effectiveness of systemic DCZ for DREADD-based chemogenetic manipulations in behavioral and slice electrophysiological applications in rats. We demonstrate that a relatively low dose of DCZ (0.1 mg/kg) supports excitatory DREADD-mediated cFos induction, DREADD-mediated inhibition of a central amygdala-dependent behavior, and DREADD-mediated inhibition of neuronal activity in a slice electrophysiology preparation. In addition, we show that this dose of DCZ does not alter gross locomotor activity or induce a place preference/aversion in control rats without DREADD expression. Together, our findings support the use of systemic DCZ for DREADD-based manipulaations in rats, and provide evidence that DCZ is a superior alternative to CNO.


Asunto(s)
Drogas de Diseño , Animales , Conducta Animal , Drogas de Diseño/metabolismo , Drogas de Diseño/farmacología , Ligandos , Locomoción , Ratones , Neuronas/metabolismo , Ratas
7.
Front Pharmacol ; 13: 837657, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35211024

RESUMEN

The present study used auditory fear conditioning to assess the impact of repeated binge-like episodes of alcohol exposure during adolescence on conditioned fear in adulthood. Male and female Long-Evans rats were subjected to adolescent intermittent ethanol (AIE) exposure by vapor inhalation between post-natal day 28 and 44. After aging into adulthood, rats then underwent fear conditioning by exposure to a series of tone-shock pairings. This was followed by cued-tone extinction training, and then testing of fear recovery. In male rats, AIE exposure enhanced conditioned freezing but did not alter the time-course of extinction of cued-tone freezing. During subsequent assessment of fear recovery, AIE exposed rats exhibited less freezing during contextual fear renewal, but greater freezing during extinction recall and spontaneous recovery. Compared to males, female rats exhibited significantly lower levels of freezing during fear conditioning, more rapid extinction of freezing behavior, and significantly lower levels of freezing during the tests of fear recovery. Unlike males that were all classified as high conditioners; female rats could be parsed into either a high or low conditioning group. However, irrespective of their level of conditioned freezing, both the high and low conditioning groups of female rats exhibited rapid extinction of conditioned freezing behavior and comparatively low levels of freezing in tests of fear recovery. Regardless of group classification, AIE had no effect on freezing behavior in female rats during acquisition, extinction, or fear recovery. Lastly, exposure of male rats to the mGlu5 positive allosteric modulator CDPPB prevented AIE-induced alterations in freezing. Taken together, these observations demonstrate sex-specific changes in conditioned fear behaviors that are reversible by pharmacological interventions that target mGlu5 receptor activation.

8.
Am J Hum Genet ; 109(2): 361-372, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35051358

RESUMEN

Nuclear deubiquitinase BAP1 (BRCA1-associated protein 1) is a core component of multiprotein complexes that promote transcription by reversing the ubiquitination of histone 2A (H2A). BAP1 is a tumor suppressor whose germline loss-of-function variants predispose to cancer. To our knowledge, there are very rare examples of different germline variants in the same gene causing either a neurodevelopmental disorder (NDD) or a tumor predisposition syndrome. Here, we report a series of 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic NDD. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. In T cells isolated from two affected children, H2A deubiquitination was impaired. In matching peripheral blood mononuclear cells, histone H3 K27 acetylation ChIP-seq indicated that these BAP1 variants induced genome-wide chromatin state alterations, with enrichment for regulatory regions surrounding genes of the ubiquitin-proteasome system (UPS). Altogether, these results define a clinical syndrome caused by rare germline missense BAP1 variants that alter chromatin remodeling through abnormal histone ubiquitination and lead to transcriptional dysregulation of developmental genes.


Asunto(s)
Proteína BRCA1/genética , Mutación de Línea Germinal , Mutación con Pérdida de Función , Mutación Missense , Trastornos del Neurodesarrollo/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Adolescente , Proteína BRCA1/inmunología , Niño , Preescolar , Cromatina/química , Cromatina/inmunología , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/inmunología , Familia , Femenino , Regulación de la Expresión Génica , Heterocigoto , Histonas/genética , Histonas/inmunología , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/inmunología , Humanos , Lactante , Masculino , Trastornos del Neurodesarrollo/inmunología , Trastornos del Neurodesarrollo/patología , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/inmunología , Linfocitos T/inmunología , Linfocitos T/patología , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/inmunología , Ubiquitina/genética , Ubiquitina/inmunología , Ubiquitina Tiolesterasa/deficiencia , Ubiquitina Tiolesterasa/inmunología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología , Ubiquitinación
9.
Neural Regen Res ; 17(6): 1273-1274, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34782570
10.
Addict Neurosci ; 42022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36643604

RESUMEN

Binge drinking during adolescence is highly prevalent despite increasing evidence of its long-term impact on behaviors associated with modulation of behavioral flexibility by the medial prefrontal cortex (mPFC). In the present study, male and female rats underwent adolescent intermittent ethanol (AIE) exposure by vapor inhalation. After aging to adulthood, retrograde bead labelling and viral tagging were used to identify populations of neurons in the prelimbic region (PrL) of the mPFC that project to specific subcortical targets. Electrophysiological recording from bead-labelled neurons in PrL slices revealed that AIE did not alter the intrinsic excitability of PrL neurons that projected to either the NAc or the BLA. Similarly, recordings of spontaneous inhibitory and excitatory post-synaptic currents revealed no AIE-induced changes in synaptic drive onto either population of projection neurons. In contrast, AIE exposure was associated with a loss of dopamine receptor 1 (D1), but no change in dopamine receptor 2 (D2), modulation of evoked firing of both populations of projection neurons. Lastly, confocal imaging of proximal and apical dendritic tufts of viral-labelled PrL neurons that projected to the nucleus accumbens (NAc) revealed AIE did not alter the density of dendritic spines. Together, these observations provide evidence that AIE exposure results in disruption of D1 receptor modulation of PrL inputs to at least two major subcortical target regions that have been implicated in AIE-induced long-term changes in behavioral control.

11.
Mol Brain ; 14(1): 155, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635126

RESUMEN

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease, with no present cure. The progressive loss of MNs is the hallmark of ALS. We have previously shown the therapeutic effects of the phosphatase and tensin homolog (PTEN) inhibitor, potassium bisperoxo (picolinato) vanadium (bpV[pic]), in models of neurological injury and demonstrated significant neuroprotective effects on MN survival. However, accumulating evidence suggests PTEN is detrimental for MN survival in ALS. Therefore, we hypothesized that treating the mutant superoxide dismutase 1 G93A (mSOD1G93A) mouse model of ALS during motor neuron degeneration and an in vitro model of mSOD1G93A motor neuron injury with bpV(pic) would prevent motor neuron loss. To test our hypothesis, we treated mSOD1G93A mice intraperitoneally daily with 400 µg/kg bpV(pic) from 70 to 90 days of age. Immunolabeled MNs and microglial reactivity were analyzed in lumbar spinal cord tissue, and bpV(pic) treatment significantly ameliorated ventral horn motor neuron loss in mSOD1G93A mice (p = 0.003) while not significantly altering microglial reactivity (p = 0.701). Treatment with bpV(pic) also significantly increased neuromuscular innervation (p = 0.018) but did not affect muscle atrophy. We also cultured motor neuron-like NSC-34 cells transfected with a plasmid to overexpress mutant SOD1G93A and starved them in serum-free medium for 24 h with and without bpV(pic) and downstream inhibitor of Akt signaling, LY294002. In vitro, bpV(pic) improved neuronal viability, and Akt inhibition reversed this protective effect (p < 0.05). In conclusion, our study indicates systemic bpV(pic) treatment could be a valuable neuroprotective therapy for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Neuronas Motoras/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Compuestos de Vanadio/uso terapéutico , Esclerosis Amiotrófica Lateral/patología , Animales , Células del Asta Anterior/efectos de los fármacos , Células Cultivadas , Cromonas/farmacología , Medio de Cultivo Libre de Suero/farmacología , Humanos , Ratones Transgénicos , Microglía/efectos de los fármacos , Modelos Animales , Morfolinas/farmacología , Atrofia Muscular/etiología , Atrofia Muscular/patología , Mutación Missense , Unión Neuromuscular/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fosfohidrolasa PTEN/antagonistas & inhibidores , Mutación Puntual , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Superóxido Dismutasa-1/deficiencia , Superóxido Dismutasa-1/genética , Compuestos de Vanadio/farmacología
12.
Int Rev Neurobiol ; 160: 305-340, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34696877

RESUMEN

Alcohol drinking is often initiated during adolescence, and this frequently escalates to binge drinking. As adolescence is also a period of dynamic neurodevelopment, preclinical evidence has highlighted that some of the consequences of binge drinking can be long lasting with deficits persisting into adulthood in a variety of cognitive-behavioral tasks. However, while the majority of preclinical work to date has been performed in male rodents, the rapid increase in binge drinking in adolescent female humans has re-emphasized the importance of addressing alcohol effects in the context of sex as a biological variable. Here we review several of the consequences of adolescent ethanol exposure in light of sex as a critical biological variable. While some alcohol-induced outcomes, such as non-social approach/avoidance behavior and sleep disruption, are generally consistent across sex, others are variable across sex, such as alcohol drinking, sensitivity to ethanol, social anxiety-like behavior, and induction of proinflammatory markers.


Asunto(s)
Consumo de Bebidas Alcohólicas , Etanol , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/fisiopatología , Animales , Conducta Animal/efectos de los fármacos , Etanol/toxicidad , Femenino , Masculino , Roedores , Factores Sexuales
13.
Int J Oral Maxillofac Surg ; 50(8): 1040-1046, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33483210

RESUMEN

The decision about which metopic synostosis patients should undergo surgery remains controversial. Multiple measures for radiographic severity have been developed in order to determine the optimal criteria for treatment. The aim of this study was to perform an extensive craniomorphometric analysis of patients who underwent surgery for metopic synostosis to validate and compare the various severity scales developed for this non-syndromic craniosynostosis. A comparative morphometric analysis was performed using computed tomography scans of preoperative metopic synostosis patients (n=167) and normal controls (n=44). Measurements included previous and newly developed metopic severity indices. Volumetric and area analyses were used to determine the degree of anterior cranial area and potential volume restrictions. Of the severity indices measured, the frontal angle, endocranial bifrontal angle (EBF), adjusted EBF (aEBF), anterior cranial fossa angle, horizontal cone angle, and bitemporal/biparietal distance ratio were significantly different in the metopic subjects relative to controls overall. However, metopic index, orbital rim angle, foramen ovale distance, and cranial volume exhibited no significant difference from controls. Only the frontal angle and aEBF correlated with the changes in anterior cranial dimensions observed in metopic synostosis. In conclusion, the frontal angle and aEBF provide the most accurate measures of severity in metopic synostosis.


Asunto(s)
Craneosinostosis , Fosa Craneal Anterior , Craneosinostosis/diagnóstico por imagen , Craneosinostosis/cirugía , Humanos , Lactante , Cráneo , Tomografía Computarizada por Rayos X
14.
Neuropharmacology ; 184: 108393, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33221480

RESUMEN

Animal models of alcohol drinking and dependence are a critical resource for understanding the neurobiological mechanisms and development of more effective treatments for alcohol use disorder (AUD). Because most rat strains do not voluntarily consume large enough quantities of alcohol to adequately model heavy drinking, dependence, and withdrawal-related symptoms, researchers frequently turn to experimenter administered methods to investigate how prolonged and repeated exposure to large quantities of alcohol impacts brain and behavior. Vaporized ethanol is a common method used for chronically subjecting rodents to alcohol and has been widely used to model both binge and dependence-inducing heavy drinking patterns observed in humans. Rodent strain, sex, and age during exposure are all well-known to influence outcomes in experiments utilizing intraperitoneal or intragastric methods of repeated ethanol exposure. Yet, despite its frequent use, the impact of these variables on outcomes associated with ethanol vapor exposure has not been widely investigated. The present study analyzed data generated from over 700 rats across an eight-year period to provide a population-level assessment of variables influencing level of intoxication using vapor exposure. Our findings reveal important differences with respect to strain, sex, and age during ethanol exposure in the relationship between blood ethanol concentration and behavioral signs of intoxication. These data provide valuable scientific and practical insight for laboratories utilizing ethanol vapor exposure paradigms to model AUD in rats.


Asunto(s)
Intoxicación Alcohólica/sangre , Nivel de Alcohol en Sangre , Etanol/administración & dosificación , Etanol/sangre , Exposición por Inhalación/efectos adversos , Caracteres Sexuales , Factores de Edad , Intoxicación Alcohólica/genética , Intoxicación Alcohólica/psicología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Femenino , Masculino , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Factores Sexuales , Especificidad de la Especie
15.
Laryngoscope Investig Otolaryngol ; 5(3): 552-559, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32596500

RESUMEN

OBJECTIVES: To determine whether functional and anatomical outcomes following suture neurorrhaphy are improved by the addition of electrical stimulation with or without the addition of polyethylene glycol (PEG). METHODS: In a rat model of facial nerve injury, complete facial nerve transection and repair was performed via (a) suture neurorrhaphy alone, (b) neurorrhaphy with the addition of brief (30 minutes) intraoperative electrical stimulation, or (c) neurorrhaphy with the addition electrical stimulation and PEG. Functional recovery was assessed weekly for 16 weeks. At 16 weeks postoperatively, motoneuron survival, amount of regrowth, and specificity of regrowth were assessed by branch labeling and tissue analysis. RESULTS: The addition of brief intraoperative electrical stimulation improved all functional outcomes compared to suturing alone. The addition of PEG to electrical stimulation impaired this benefit. Motoneuron survival, amount of regrowth, and specificity of regrowth were unaltered at 16 weeks postoperative in all treatment groups. CONCLUSION: The addition of brief intraoperative electrical stimulation to neurorrhaphy in this rodent model shows promising neurological benefit in the surgical repair of facial nerve injury. LEVEL OF EVIDENCE: Animal study.

17.
Alcohol ; 85: 111-118, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31923560

RESUMEN

Ghrelin is an appetite-regulating peptide that is primarily secreted by endocrine cells in the stomach and is implicated in regulation of alcohol consumption and alcohol-reinforced behaviors. In the present study, adolescent Sprague-Dawley rats received intermittent ethanol (AIE) exposure by intragastric intubation (5 g/kg) or vapor inhalation, manipulations conducted between postnatal days (PD) 28-43. On the first and last day of AIE exposure, the level of intoxication was examined 1 h after ethanol gavage or upon removal from the vapor chamber. This was immediately followed by a blood draw for determination of the blood ethanol concentration (BEC) and plasma levels of acylated ghrelin (acyl-ghrelin; active). On PD29, plasma levels of acyl-ghrelin were significantly elevated in male (but not female) rats in response to acute ethanol exposure by both gastric gavage and vapor inhalation. Importantly, assessment of plasma acyl-ghrelin in response to repeated ethanol exposure revealed a complex interaction of both sex and method of AIE exposure. On PD43, vapor inhalation increased plasma acyl-ghrelin in both males and females compared to their air-control counterparts, whereas there was no change in plasma levels of acyl-ghrelin in either male or female rats in response to exposure by intragastric gavage. Assessment of plasma acyl-ghrelin following a 30-day ethanol-free period revealed AIE exposure did not produce a change in basal levels. In addition, an acute ethanol challenge in adult rats of 5 g/kg via gastric gavage had no effect on plasma ghrelin levels when assessed 1 h after initiation of exposure. Collectively, these observations suggest that acyl-ghrelin, a primary gut-brain signaling hormone, is elevated by ethanol during early adolescence independent of administration route, and in gender-dependent fashion.


Asunto(s)
Etanol/farmacología , Ghrelina/análogos & derivados , Administración por Inhalación , Animales , Etanol/administración & dosificación , Etanol/sangre , Femenino , Ghrelina/sangre , Intubación Gastrointestinal , Masculino , Ratas , Ratas Sprague-Dawley , Caracteres Sexuales
18.
Foot Ankle Spec ; 13(6): 494-501, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31791155

RESUMEN

Introduction. Injury to the Lisfranc's joint, in particular to the second metatarsal-medial cuneiform (second MMC) joint, can be difficult to evaluate, especially in subtle Lisfranc injuries. The purpose of this study was to determine the value of the Lisfranc joint width (diastasis) of the adult foot in a standardized population thereby establishing a potential reference range when investigating this area for potential injury. Methods. The 2nd MMC joint in 50 men and 50 women was evaluated. Individuals with a history of foot/ankle pain, previous foot/ankle operation or fracture, or a history of systemic disease were excluded from the study. Bilateral weightbearing digital anterior-posterior and lateral radiographs were taken using a standardized method. Results. The mean 2nd MMC diastasis in 200 feet was 5.6 mm (95% CI 5.39-5.81). In the female population, the mean 2nd MMC diastasis was 5.8 mm (95% CI 5.51-6.09) as compared with 5.6 mm (95% CI 5.31-5.89) in males. The mean distance between the fifth metatarsal base and first cuneiform in the entire study population was 16.3 mm (95% CI 15.57-17.03). Conclusion. This study helps define baseline measurements of the Lisfranc joint for the general population, which can provide a standard measurement against which suspected foot injuries can be compared.Level of Evidence: Level IV.


Asunto(s)
Diástasis Ósea/diagnóstico por imagen , Traumatismos de los Pies/diagnóstico por imagen , Antepié Humano/diagnóstico por imagen , Antepié Humano/lesiones , Huesos Metatarsianos/diagnóstico por imagen , Huesos Metatarsianos/lesiones , Radiografía/normas , Huesos Tarsianos/diagnóstico por imagen , Huesos Tarsianos/lesiones , Adulto , Anciano , Diástasis Ósea/etiología , Femenino , Traumatismos de los Pies/complicaciones , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
19.
Brain Sci ; 9(7)2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-31337114

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron (MN) disease with no cure. Accumulating evidence indicates ALS involves a complex interaction between central glia and the peripheral immune response and neuromuscular interface. Stem cell secretomes contain various beneficial trophic factors and cytokines, and we recently demonstrated that administration of the secretome of adipose-derived stem cells (ASCs) during early neuromuscular junction (NMJ) denervation in the mutant superoxide dismutase (mSOD1G93A) ALS mouse ameliorated NMJ disruption. In the present study, we hypothesized that administration of dental pulp stem cell secretome in the form of conditioned medium (DPSC-CM) at different stages of disease would promote NMJ innervation, prevent MN loss and extend lifespan. Our findings show that DPSC-CM significantly improved NMJ innervation at postnatal day (PD) 47 compared to vehicle treated mSOD1G93A mice (p < 0.05). During late pre-symptomatic stages (PD70-P91), DPSC-CM significantly increased MN survival (p < 0.01) and NMJ preservation (p < 0.05), while reactive gliosis in the ventral horn remained unaffected. For DPSC-CM treated mSOD1G93A mice beginning at symptom onset, post-onset days of survival as well as overall lifespan was significantly increased compared to vehicle treated mice (p < 0.05). This is the first study to show therapeutic benefits of systemic DPSC secretome in experimental ALS, and establishes a foundation for future research into the treatment effects and mechanistic analyses of DPSC and other stem cell secretome therapies in ALS.

20.
Alcohol Clin Exp Res ; 43(9): 1806-1822, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31335972

RESUMEN

The Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium has focused on the impact of adolescent binge drinking on brain development, particularly on effects that persist into adulthood. Adolescent binge drinking is common, and while many factors contribute to human brain development and alcohol use during adolescence, animal models are critical for understanding the specific consequences of alcohol exposure during this developmental period and the underlying mechanisms. Using adolescent intermittent ethanol (AIE) exposure models, NADIA investigators identified long-lasting AIE-induced changes in adult behavior that are consistent with observations in humans, such as increased alcohol drinking, increased anxiety (particularly social anxiety), increased impulsivity, reduced behavioral flexibility, impaired memory, disrupted sleep, and altered responses to alcohol. These behavioral changes are associated with multiple molecular, cellular, and physiological alterations in the brain that persist long after AIE exposure. At the molecular level, AIE results in long-lasting changes in neuroimmune/trophic factor balance and epigenetic-microRNA (miRNA) signaling across glia and neurons. At the cellular level, AIE history is associated in adulthood with reduced expression of cholinergic, serotonergic, and dopaminergic neuron markers, attenuated cortical thickness, decreased neurogenesis, and altered dendritic spine and glial morphology. This constellation of molecular and cellular adaptations to AIE likely contributes to observed alterations in neurophysiology, measured by synaptic physiology, EEG patterns, and functional connectivity. Many of these AIE-induced brain changes replicate findings seen in postmortem brains of humans with alcohol use disorder (AUD). NADIA researchers are now elucidating mechanisms of these adaptations. Emerging data demonstrate that exercise, antiinflammatory drugs, anticholinesterases, histone deacetylase inhibitors, and other pharmacological compounds are able to prevent (administered during AIE) and/or reverse (given after AIE) AIE-induced pathology in adulthood. These studies support hypotheses that adolescent binge drinking increases risk of adult hazardous drinking and influences brain development, and may provide insight into novel therapeutic targets for AIE-induced neuropathology and AUDs.


Asunto(s)
Conducta/efectos de los fármacos , Encéfalo/efectos de los fármacos , Etanol/efectos adversos , Consumo de Alcohol en Menores , Animales , Humanos , Neuroinmunomodulación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...