Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes Dis ; 10(4): 1133-1135, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37397512

RESUMEN

The tendency of herpesvirus proteins, such as HCMV-vMIA and KSHV vFLIP, to interact with PEX19 and further interplay with MAVS is crucial. Investigating other herpesviral proteins that tend to interact with PEX19, and MAVS could provide an idea of whether this is a pan-herpesviral strategy.

2.
Med Drug Discov ; 16: 100146, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36415887

RESUMEN

In malaria endemic countries, coinfections and cotransmissions of different viral pathogens are widely reported. Prior studies have shown that malaria can trigger the Epstein-Barr virus (EBV) reactivation in the body. Besides, the altered immunity due to malaria could increase susceptibility to acquire co-circulating viruses like SARS-CoV-2 or vice versa during pandemic times. The dual burden of pathogens can deteriorate health by inducing disease severity. There are no or limited antiviral therapies available against EBV and SARS-CoV-2. Exploring the novel antimalarials for checking antiviral efficacy and using them in such cases could be the efficient approach of 'hitting two birds with one stone'. We investigated the antiviral potency of medicine for a malaria venture's malaria box containing 400 drug-like or probe-like compounds with experimentally proven antimalarial activity. We utilized a molecular docking approach to screen these compounds against crucial proteins- EBNA1 of EBV and RdRp of SARS-CoV-2 respectively. Based on binding affinity we shortlisted the top three compounds for each protein. Further, for validation of complex stability and binding, the protein-ligand complex is subjected to 100 ns molecular dynamic simulation. All the compounds showed stable binding with respective proteins. Based on binding free energies, involvement of important residues from target sites, and ADMET properties of compounds, the top ligand for each protein is selected. Ligand B (MMV665879) for EBNA1 (ΔGbind = -183.54 kJ/mol) and Ligand E (MMV665918) for RdRp (ΔGbind = -172.23 kJ/mol) could act as potential potent inhibitors. These antimalarial compounds can hence be utilized for further experimental investigation as antivirals against EBV and SARS-CoV-2.

3.
Chem Biodivers ; 19(9): e202200527, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35979671

RESUMEN

Although primary infection of Epstein-Barr virus is generally non-lethal, viral reactivation is often associated with fatal outcomes. Regardless, there is no FDA-approved treatment available for this omnipresent viral infection. The current investigation targets viral maintenance and reactivation by inhibiting the functioning of viral deoxyuridine-triphosphatase (dUTPase) using phytochemicals. The EBV-dUTPase is essential for maintaining nucleotide balance and thus, plays a vital role in the viral replication cycle. Additionally, the protein has shown neuroinflammatory effects on the host. To selectively target the protein and possibly alter its activity, we utilized a virtual screening approach and screened 45 phytochemicals reported to have antiviral, anti-inflammatory, and neuroprotective properties. The analysis revealed several phytochemicals bound to the target protein with high affinity. In-silico ADMET and Lipinski's rule analysis predicted favorable druggability of Dehydroevodiamine (DHE) among all the phytochemicals. Further, we corroborated our findings by molecular dynamic simulation and binding affinity estimation. Our outcomes ascertained a stable binding of DHE to EBV-dUTPase primarily through electrostatic interactions. We identified that the protein-ligand binding involves the region around His71, previously reported as a potent drug target site. Conclusively, the phytochemical DHE showed a promising future as a drug development candidate against EBV-dUTPase.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Antiinflamatorios/farmacología , Antivirales/farmacología , Desoxiuridina , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Herpesvirus Humano 4/fisiología , Humanos , Ligandos , Nucleótidos , Fitoquímicos/farmacología , Pirofosfatasas
4.
Tumour Virus Res ; 12: 200227, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34800753

RESUMEN

Herpesviruses are ubiquitous viruses, specifically the Epstein Barr virus (EBV). EBV and Kaposi's sarcoma-associated herpesvirus (KSHV) establish their latency for a long period in B-cells and their reactivation instigates dreadful diseases from cancer to neurological modalities. The envelope glycoprotein of these viruses makes an attachment with several host receptors. For instance; glycoprotein 350/220, gp42, gHgL and gB of EBV establish an attachment with CD21, HLA-DR, Ephs, and other receptor molecules to hijack the B- and epithelial cell machinery. Ephs are reported recently as potent receptors for EBV entry into epithelial cells. Eph receptors play a role in the maintenance and control of various cellular processes including morphology, adhesion, proliferation, survival and differentiation. Alterations in the structure and expression of Eph and ephrin (Eph ligands) molecules is entangled with various pathologies including tumours and neurological complications. Along with Eph, integrins, NRP, NMHC are also key players in viral infections as they are possibly involved in viral transmission, replication and persistence. Contrarily, KSHV gH is known to interact with EphA2 and -A4 molecules, whereas in the case of EBV only EphA2 receptors are being reported to date. The ELEFN region of KSHV gH was involved in the interaction with EphA2, however, the interacting region of EBV gH is elusive. Further, the gHgL of KSHV and EBV form a complex with the EphA2 ligand-binding domain (LBD). Primarily by using gL both KSHV and EBV gHgL bind to the peripheral regions of LBD. In addition to γ-herpesviruses, several other viruses like Nipah virus, Cedar virus, Hepatitis C virus and Rhesus macaque rhadinovirus (RRV) also access the host cells via Eph receptors. Therefore, we summarise the possible roles of Eph and ephrins in virus-mediated infection and these molecules could serve as potential therapeutic targets.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Virosis , Animales , Células Epiteliales , Herpesvirus Humano 4 , Humanos , Macaca mulatta , Proteínas del Envoltorio Viral , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA