Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Magn Reson Med ; 91(1): 413-423, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37676121

RESUMEN

PURPOSE: In this study, we compared two triarylmethyl (TAM) spin probes, Ox071 and Ox063 for their efficacy in measuring tissue oxygen levels under hypoxic and normoxic conditions by R2 *-based EPR oximetry. METHODS: The R2 * dependencies on the spin probe concentration and oxygen level were calibrated using deoxygenated 1, 2, 5, and 10 mM standard solutions and 2 mM solutions saturated at 0%, 2%, 5%, 10%, and 21% of oxygen. For the hypoxic model, in vivo imaging of a MIA PaCa-2 tumor implanted in the hind leg of a mouse was performed on successive days by R2 *-based EPR oximetry using either Ox071 or Ox063. For the normoxic model, renal imaging of healthy athymic mice was performed using both spin probes. The 3D images were reconstructed by single point imaging and multi-gradient technique was used to determine R2 * maps. RESULTS: The signal intensities of Ox071 were approximately three times greater than that of Ox063 in the entire partial pressure of oxygen (pO2 ) range investigated. The histograms of the tumor pO2 images were skewed for both spin probes, and Ox071 showed more frequency counts at pO2 > 32 mm Hg. In the normoxic kidney model, there was a clear delineation between the high pO2 cortex and the low pO2 medulla regions. The histogram of high-resolution kidney oximetry image using Ox071 was nearly symmetrical and frequency counts were seen up to 55 mm Hg, which were missed in Ox063 imaging. CONCLUSION: As an oximetric probe, Ox071 has clear advantages over Ox063 in terms of sensitivity and the pO2 dynamic range.


Asunto(s)
Neoplasias , Oximetría , Ratones , Animales , Espectroscopía de Resonancia por Spin del Electrón/métodos , Oximetría/métodos , Oxígeno , Imagenología Tridimensional
2.
Antioxid Redox Signal ; 39(7-9): 432-444, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37051681

RESUMEN

Aims: Pancreatic ductal adenocarcinomas (PDACs) form hypovascular and hypoxic tumors, which are difficult to treat with current chemotherapy regimens. Gemcitabine (GEM) is often used as a first-line treatment for PDACs but has issues with chemoresistance and penetration in the interior of the tumor. Evofosfamide, a hypoxia-activated prodrug, has been shown to be effective in combination with GEM, although the mechanism of each drug on the other has not been established. We used mouse xenografts from two cell lines (MIA Paca-2 and SU.86.86) with different tumor microenvironmental characteristics to probe the action of each drug on the other. Results: GEM treatment enhanced survival times in mice with SU.86.86 leg xenografts (hazard ratio [HR] = 0.35, p = 0.03) but had no effect on MIA Paca-2 mice (HR = 0.91, 95% confidence interval = 0.37-2.25, p = 0.84). Conversely, evofosfamide did not improve survival times in SU.86.86 mice to a statistically significant degree (HR = 0.57, p = 0.22). Electron paramagnetic resonance imaging showed that oxygenation worsened in MIA Paca-2 tumors when treated with GEM, providing a direct mechanism for the activation of the hypoxia-activated prodrug evofosfamide by GEM. Sublethal amounts of either treatment enhanced the toxicity of other treatment in vitro in SU.86.86 but not in MIA Paca-2. By the biomarker γH2AX, combination treatment increased the number of double-stranded DNA lesions in vitro for SU.86.86 but not MIA Paca-2. Innovation and Conclusion: The synergy between GEM and evofosfamide appears to stem from the dual action of GEMs effect on tumor vasculature and inhibition by GEM of the homologous recombination DNA repair process. Antioxid. Redox Signal. 39, 432-444.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Profármacos , Humanos , Animales , Ratones , Gemcitabina , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Xenoinjertos , Profármacos/farmacología , Profármacos/uso terapéutico , Reparación del ADN por Recombinación , Línea Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Hipoxia/tratamiento farmacológico , Neoplasias Pancreáticas
3.
J Drug Target ; 30(6): 623-633, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35100927

RESUMEN

Endometrial cancer (EC) is a common and deadly cancer in women and novel therapeutic approaches are urgently needed. Polyamines (putrescine, spermidine, spermine) are critical for mammalian cell proliferation and MYC coordinately regulates polyamine metabolism through ornithine decarboxylase (ODC). ODC is a MYC target gene and rate-limiting enzyme of polyamine biosynthesis and the FDA-approved anti-protozoan drug α-difluoromethylornithine (DFMO) inhibits ODC activity and induces polyamine depletion that leads to tumour growth arrest. Spermidine is required for the hypusine-dependent activation of eukaryotic translation initiation factors 5A1 (eIF5A1) and 5A2 (eIF5A2) and connects the MYC/ODC-induced deregulation of spermidine to eIF5A1/2 protein translation, which is increased during cancer cell proliferation. We show that eIF5A1 is significantly upregulated in EC cells compared to control cells (p=.000038) and that combined pharmacological targeting of ODC and eIF5A hypusination with cytostatic drugs DFMO and N1-guanyl-1,7-diaminoheptane (GC7), respectively, reduces eIF5A1 activation and synergistically induces apoptosis in EC cells. In vivo, DFMO/GC7 suppressed xenografted EC tumour growth in mice more potently than each drug alone compared to control (p=.002) and decreased putrescine (p=.045) and spermidine levels in tumour tissues. Our data suggest DFMO and GC7 combination therapy may be useful in the treatment or prevention of EC.


Asunto(s)
Neoplasias Endometriales , Poliaminas , Animales , Eflornitina/farmacología , Neoplasias Endometriales/tratamiento farmacológico , Femenino , Humanos , Lisina/análogos & derivados , Mamíferos/metabolismo , Ratones , Ornitina Descarboxilasa/metabolismo , Poliaminas/metabolismo , Putrescina/metabolismo , Espermidina/metabolismo , Espermidina/farmacología , Espermina/metabolismo , Espermina/farmacología
4.
Int J Mol Sci ; 22(9)2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-34063570

RESUMEN

Understanding the global metabolic changes during the senescence of tumor cells can have implications for developing effective anti-cancer treatment strategies. Ionizing radiation (IR) was used to induce senescence in a human colon cancer cell line HCT-116 to examine secretome and metabolome profiles. Control proliferating and senescent cancer cells (SCC) exhibited distinct morphological differences and expression of senescent markers. Enhanced secretion of pro-inflammatory chemokines and IL-1, anti-inflammatory IL-27, and TGF-ß1 was observed in SCC. Significantly reduced levels of VEGF-A indicated anti-angiogenic activities of SCC. Elevated levels of tissue inhibitors of matrix metalloproteinases from SCC support the maintenance of the extracellular matrix. Adenylate and guanylate energy charge levels and redox components NAD and NADP and glutathione were maintained at near optimal levels indicating the viability of SCC. Significant accumulation of pyruvate, lactate, and suppression of the TCA cycle in SCC indicated aerobic glycolysis as the predominant energy source for SCC. Levels of several key amino acids decreased significantly, suggesting augmented utilization for protein synthesis and for use as intermediates for energy metabolism in SCC. These observations may provide a better understanding of cellular senescence basic mechanisms in tumor tissues and provide opportunities to improve cancer treatment.


Asunto(s)
Senescencia Celular/genética , Neoplasias del Colon/genética , Redes y Vías Metabólicas/genética , Metaboloma/genética , Senescencia Celular/efectos de la radiación , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Células HCT116 , Humanos , Interleucina-1/genética , Interleucina-27/genética , Redes y Vías Metabólicas/efectos de la radiación , Metaboloma/efectos de la radiación , Radiación Ionizante , Factor de Crecimiento Transformador beta1/genética , Factor A de Crecimiento Endotelial Vascular/genética
5.
Antioxid Redox Signal ; 35(11): 904-915, 2021 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-32787454

RESUMEN

Aims: In hypoxic tumor microenvironments, the strongly reducing redox environment reduces evofosfamide (TH-302) to release a cytotoxic bromo-isophosphoramide (Br-IPM) moiety. This drug therefore preferentially attacks hypoxic regions in tumors where other standard anticancer treatments such as chemotherapy and radiation therapy are often ineffective. Various combination therapies with evofosfamide have been proposed and tested in preclinical and clinical settings. However, the treatment effect of evofosfamide monotherapy on tumor hypoxia has not been fully understood, partly due to the lack of quantitative methods to assess tumor pO2in vivo. Here, we use quantitative pO2 imaging by electron paramagnetic resonance (EPR) to evaluate the change in tumor hypoxia in response to evofosfamide treatment using two pancreatic ductal adenocarcinoma xenograft models: MIA Paca-2 tumors responding to evofosfamide and Su.86.86 tumors that do not respond. Results: EPR imaging showed that oxygenation improved globally after evofosfamide treatment in hypoxic MIA Paca-2 tumors, in agreement with the ex vivo results obtained from hypoxia staining by pimonidazole and in apparent contrast to the decrease in Ktrans observed in dynamic contrast-enhanced magnetic resonance imaging (DCE MRI). Innovations: The observation that evofosfamide not only kills the hypoxic region of the tumor but also improves oxygenation in the residual tumor regions provides a rationale for combination therapies using radiation and antiproliferatives post evofosfamide for improved outcomes. Conclusion: This study suggests that reoxygenation after evofosfamide treatment is due to decreased oxygen demand rather than improved perfusion. Following the change in pO2 after treatment may therefore yield a way of monitoring treatment response. Antioxid. Redox Signal. 35, 904-915.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/terapia , Hipoxia de la Célula/efectos de los fármacos , Nitroimidazoles/farmacología , Neoplasias Pancreáticas/terapia , Mostazas de Fosforamida/farmacología , Profármacos/farmacología , Animales , Antineoplásicos/química , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Nitroimidazoles/química , Oxidación-Reducción , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Mostazas de Fosforamida/química , Profármacos/química
6.
Heliyon ; 6(5): e04075, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32490257

RESUMEN

Endometrial cancer is the most common gynecologic malignancy in the U.S. with metastatic disease remaining the major cause of patient death. Therapeutic strategies have remained essentially unchanged for decades. A significant barrier to progression in treatment modalities stems from a lack of clinically applicable in vivo models to accurately mimic endometrial cancer; specifically, ones that form distant metastases and maintain an intact immune system. To address this problem, we have established the first immune competent murine orthotopic tumor model for metastatic endometrial cancer by creating a green fluorescent protein labeled cell line from an endometrial cancer that developed in a Pgr cre/+ Pten f/f Kras G12D genetically engineered mouse. These cancer cells were grafted into the abraded uterine lumen of ovariectomized recipient mice treated with estrogen and subsequently developed local and metastatic endometrial tumors. We noted primary tumor formation in 59% mixed background and 86% of C57BL/6 animals at 4 weeks and distant lung metastases in 78% of mice after 2 months. This immunocompetent orthotopic tumor model closely resembles some human metastatic endometrial cancer, modeling both local metastasis and hematogenous spread to lung and has significant potential to advance the study of endometrial cancer and its metastasis.

7.
Magn Reson Med ; 80(5): 2275-2287, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29582458

RESUMEN

PURPOSE: Spin-lattice relaxation rate (R1 )-based time-domain EPR oximetry is reported for in vivo applications using a paramagnetic probe, a trityl-based Oxo71. METHODS: The R1 dependence of the trityl probe Oxo71 on partial oxygen pressure (pO2 ) was assessed using single-point imaging mode of spatial encoding combined with rapid repetition, similar to T1 -weighted MRI, for which R1 was determined from 22 repetition times ranging from 2.1 to 40.0 µs at 300 MHz. The pO2 maps of a phantom with 3 tubes containing 2 mM Oxo71 solutions equilibrated at 0%, 2%, and 5% oxygen were determined by R1 and apparent spin-spin relaxation rate ( R2*) simultaneously. RESULTS: The pO2 maps derived from R1 and R2* agreed with the known pO2 levels in the tubes of Oxo71. However, the histograms of pO2 revealed that R1 offers better pO2 resolution than R2* in low pO2 regions. The SDs of pixels at 2% pO2 (15.2 mmHg) were about 5 times lower in R1 -based estimation than R2*-based estimation (mean ± SD: 13.9 ± 1.77 mmHg and 18.3 ± 8.70 mmHg, respectively). The in vivo pO2 map obtained from R1 -based assessment displayed a homogeneous profile in low pO2 regions in tumor xenografts, consistent with previous reports on R2*-based oximetric imaging. The scan time to obtain the R1 map can be significantly reduced using 3 repetition times ranging from 4.0 to 12.0 µs. CONCLUSION: Using the single-point imaging modality, R1 -based oximetry imaging with useful spatial and oxygen resolutions for small animals was demonstrated.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Oximetría/métodos , Animales , Línea Celular Tumoral , Femenino , Ratones , Ratones Endogámicos C3H , Oxígeno/sangre , Fantasmas de Imagen
8.
PLoS One ; 12(12): e0189044, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29240775

RESUMEN

Ornithine Decarboxylase (ODC) a key enzyme in polyamine biosynthesis is often overexpressed in cancers and contributes to polyamine-induced cell proliferation. We noted ubiquitous expression of ODC1 in our published endometrial cancer gene array data and confirmed this in the cancer genome atlas (TCGA) with highest expression in non-endometrioid, high grade, and copy number high cancers, which have the worst clinical outcomes. ODC1 expression was associated with worse overall survival and increased recurrence in three endometrial cancer gene expression datasets. Importantly, we confirmed these findings using quantitative real-time polymerase chain reaction (qRT-PCR) in a validation cohort of 60 endometrial cancers and found that endometrial cancers with elevated ODC1 had significantly shorter recurrence-free intervals (KM log-rank p = 0.0312, Wald test p = 5.59e-05). Difluoromethylornithine (DFMO) a specific inhibitor of ODC significantly reduced cell proliferation, cell viability, and colony formation in cell line models derived from undifferentiated, endometrioid, serous, carcinosarcoma (mixed mesodermal tumor; MMT) and clear cell endometrial cancers. DFMO also significantly reduced human endometrial cancer ACI-98 tumor burden in mice compared to controls (p = 0.0023). ODC-regulated polyamines (putrescine [Put] and/or spermidine [Spd]) known activators of cell proliferation were strongly decreased in response to DFMO, in both tumor tissue ([Put] (p = 0.0006), [Spd] (p<0.0001)) and blood plasma ([Put] (p<0.0001), [Spd] (p = 0.0049)) of treated mice. Our study indicates that some endometrial cancers appear particularly sensitive to DFMO and that the polyamine pathway in endometrial cancers in general and specifically those most likely to suffer adverse clinical outcomes could be targeted for effective treatment, chemoprevention or chemoprevention of recurrence.


Asunto(s)
Neoplasias Endometriales/tratamiento farmacológico , Ornitina Descarboxilasa/efectos de los fármacos , Animales , Estudios de Cohortes , Neoplasias Endometriales/enzimología , Femenino , Humanos , Ratones , Ratones Desnudos , Ornitina Descarboxilasa/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
Magn Reson Imaging ; 37: 90-99, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27989911

RESUMEN

PURPOSE: Electron paramagnetic resonance (EPR) imaging has evolved as a promising tool to provide non-invasive assessment of tissue oxygenation levels. Due to the extremely short T2 relaxation time of electrons, single point imaging (SPI) is used in EPRI, limiting achievable spatial and temporal resolution. This presents a problem when attempting to measure changes in hypoxic state. In order to capture oxygen variation in hypoxic tissues and localize cycling hypoxia regions, an accelerated EPRI imaging method with minimal loss of information is needed. METHODS: We present an image acceleration technique, partial Fourier compressed sensing (PFCS), that combines compressed sensing (CS) and partial Fourier reconstruction. PFCS augments the original CS equation using conjugate symmetry information for missing measurements. To further improve image quality in order to reconstruct low-resolution EPRI images, a projection onto convex sets (POCS)-based phase map and a spherical-sampling mask are used in the reconstruction process. The PFCS technique was used in phantoms and in vivo SCC7 tumor mice to evaluate image quality and accuracy in estimating O2 concentration. RESULTS: In both phantom and in vivo experiments, PFCS demonstrated the ability to reconstruct images more accurately with at least a 4-fold acceleration compared to traditional CS. Meanwhile, PFCS is able to better preserve the distinct spatial pattern in a phantom with a spatial resolution of 0.6mm. On phantoms containing Oxo63 solution with different oxygen concentrations, PFCS reconstructed linewidth maps that were discriminative of different O2 concentrations. Moreover, PFCS reconstruction of partially sampled data provided a better discrimination of hypoxic and oxygenated regions in a leg tumor compared to traditional CS reconstructed images. CONCLUSIONS: EPR images with an acceleration factor of four are feasible using PFCS with reasonable assessment of tissue oxygenation. The technique can greatly enhance EPR applications and improve our understanding cycling hypoxia. Moreover this technique can be easily extended to various MRI applications.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Hipoxia/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Pulmonares/metabolismo , Algoritmos , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Análisis de Fourier , Ratones , Ratones Endogámicos C3H , Fantasmas de Imagen
10.
Cancer Res ; 76(6): 1569-77, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26880804

RESUMEN

Nonlethal exposure to ionizing radiation (IR) is a public concern due to its known carcinogenic effects. Although latency periods for IR-induced neoplasms are relatively long, the ability to detect cancer as early as possible is highly advantageous for effective therapeutic intervention. Therefore, we hypothesized that metabolites in the urine from mice exposed to total body radiation (TBI) would predict for the presence of cancer before a palpable mass was detected. In this study, we exposed mice to 0 or 5.4 Gy TBI, collected urine samples periodically over 1 year, and assayed urine metabolites by using mass spectrometry. Longitudinal data analysis within the first year post-TBI revealed that cancers, including hematopoietic, solid, and benign neoplasms, could be distinguished by unique urinary signatures as early as 3 months post-TBI. Furthermore, a distinction among different types of malignancies could be clearly delineated as early as 3 months post-TBI for hematopoietic neoplasms, 6 months for solid neoplasms, and by 1 year for benign neoplasms. Moreover, the feature profile for radiation-exposed mice 6 months post-TBI was found to be similar to nonirradiated control mice at 18 months, suggesting that TBI accelerates aging. These results demonstrate that urine feature profiles following TBI can identify cancers in mice prior to macroscopic detection, with important implications for the early diagnosis and treatment.


Asunto(s)
Neoplasias Inducidas por Radiación/metabolismo , Animales , Relación Dosis-Respuesta en la Radiación , Femenino , Espectrometría de Masas/métodos , Metabolómica/métodos , Ratones , Ratones Endogámicos C3H , Radiación Ionizante , Irradiación Corporal Total/métodos
11.
Mol Carcinog ; 53(8): 610-24, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23401136

RESUMEN

The KAI1/CD82 tetraspanin is a widely expressed cell surface molecule thought to organize diverse cellular signaling processes. KAI1/CD82 suppresses metastasis but not tumorigenicity, establishing it as one of a class of metastasis suppressor genes. In order to further assess its functions, we have characterized the phenotypic properties of Kai1/Cd82 deleted mice, including viability, fertility, lymphocyte composition, blood chemistry and tissue histopathology, and of their wild-type and heterozygote littermates. Interestingly, Kai1/Cd82(-/-) showed no obvious genotype associated defects in any of these processes and displayed no genotype associated histopathologic abnormalities after 12 or 18 months of life. Expression profiles of non-immortal, wild-type and Kai1/Cd82(-/-) mouse embryo fibroblast (MEFs) indicated distinct sex-specific and genotype-specific profiles. These data identify 191 and 1,271 differentially expressed transcripts (by twofold at P < 0.01) based on Kai1/CD82 genotype status in female and male MEFs, respectively. Differentially expressed genes in male MEFs were surprisingly enriched for cell division related processes, suggesting that Kai1/Cd82 may functionally affect these processes. This suggests that Kai/Cd82 has an unappreciated role in the early establishment of proliferation and division when challenged with a new environment that might play a role in adaptability to new metastatic sites.


Asunto(s)
Proliferación Celular , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Proteína Kangai-1/fisiología , Neoplasias Experimentales/mortalidad , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Northern Blotting , Western Blotting , Células Cultivadas , Embrión de Mamíferos/citología , Femenino , Fibroblastos/citología , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tasa de Supervivencia
12.
Biochem Biophys Res Commun ; 436(4): 677-84, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23774580

RESUMEN

BACKGROUND: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient's placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. METHODS AND RESULTS: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. CONCLUSION: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.


Asunto(s)
Células Madre Pluripotentes/citología , Trofoblastos/citología , Diferenciación Celular , Proliferación Celular , Epigénesis Genética , Humanos , Células Madre Pluripotentes/metabolismo , Transcriptoma , Trofoblastos/metabolismo
13.
Front Oncol ; 3: 139, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23785665

RESUMEN

Endometrial cancer is the most common gynecologic malignancy in the United States but it remains poorly understood at the molecular level. This investigation was conducted to specifically assess whether gene expression changes underlie the clinical and pathologic factors traditionally used for determining treatment regimens in women with stage I endometrial cancer. These include the effect of tumor grade, depth of myometrial invasion and histotype. We utilized oligonucleotide microarrays to assess the transcript expression profile in epithelial glandular cells laser microdissected from 79 endometrioid and 12 serous stage I endometrial cancers with a heterogeneous distribution of grade and depth of myometrial invasion, along with 12 normal post-menopausal endometrial samples. Unsupervised multidimensional scaling analyses revealed that serous and endometrioid stage I cancers have similar transcript expression patterns when compared to normal controls where 900 transcripts were identified to be differentially expressed by at least fourfold (univariate t-test, p < 0.001) between the cancers and normal endometrium. This analysis also identified transcript expression differences between serous and endometrioid cancers and tumor grade, but no apparent differences were identified as a function of depth of myometrial invasion. Four genes were validated by quantitative PCR on an independent set of cancer and normal endometrium samples. These findings indicate that unique gene expression profiles are associated with histologic type and grade, but not myometrial invasion among early stage endometrial cancers. These data provide a comprehensive perspective on the molecular alterations associated with stage I endometrial cancer, particularly those subtypes that have the worst prognosis.

14.
PLoS One ; 8(6): e63909, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23785396

RESUMEN

The study of uterine leiomyomata (fibroids) provides a unique opportunity to investigate the physiological and molecular determinants of hormone dependent tumor growth and spontaneous tumor regression. We conducted a longitudinal clinical study of premenopausal women with leiomyoma that showed significantly different growth rates between white and black women depending on their age. Growth rates for leiomyoma were on average much higher from older black women than for older white women, and we now report gene expression pattern differences in tumors from these two groups of study participants. Total RNA from 52 leiomyoma and 8 myometrial samples were analyzed using Affymetrix Gene Chip expression arrays. Gene expression data was first compared between all leiomyoma and normal myometrium and then between leiomyoma from older black women (age 35 or older) and from older white women. Genes that were found significant in pairwise comparisons were further analyzed for canonical pathways, networks and biological functions using the Ingenuity Pathway Analysis (IPA) software. Whereas our comparison of leiomyoma to myometrium produced a very large list of genes highly similar to numerous previous studies, distinct sets of genes and signaling pathways were identified in comparisons of older black and white women whose tumors were likely to be growing and non-growing, respectively. Key among these were genes associated with regulation of apoptosis. To our knowledge, this is the first study to compare two groups of tumors that are likely to have different growth rates in order to reveal molecular signals likely to be influential in tumor growth.


Asunto(s)
Población Negra/genética , Expresión Génica , Leiomioma/genética , Leiomioma/patología , Población Blanca/genética , Adulto , Factores de Edad , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Leiomioma/metabolismo , Persona de Mediana Edad , Miometrio/metabolismo , Miometrio/patología , Premenopausia , Transducción de Señal , Carga Tumoral , Adulto Joven
15.
J Immunother ; 36(2): 102-11, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23377663

RESUMEN

The dendritic cell vaccine DC-Ad-GM·CAIX is an active, specific immunotherapy with the potential of providing a safe and effective therapy against renal cell carcinoma (RCC). Using immunocompetent Balb/c mouse models we tested the efficacy and mechanism of the vaccine to prevent and treat the growth of a syngeneic RCC (RENCA) engineered to overexpress the human TAA carbonic anhydrase IX (NPR-IX). In a prevention model, NPR-IX tumor development was specifically and significantly delayed by 13 days in DC-Ad-GM·CAIX-treated mice (P < 0.001), tumor volumes were 79% smaller (day 24, P < 0.007), and body weight was maintained at study termination compared with the controls. Six of these mice remained tumor-free for > 1 year. In a treatment model, NPR-IX tumors remained smaller in DC-Ad-GM·CAIX-treated mice for 8 days (P < 0.002), achieving a 60% growth inhibition at termination. No vaccine-related organ toxicity was observed in either model. The critical mechanistic parameter separating responsive from nonresponsive tumors was hCAIX protein expression, demonstrated by aggressive growth of tumors that did not express hCAIX protein and in sham-treated mice (DC-Ad-Null). No murine serum anti-hCAIX antibodies were detected. Moreover, altered mechanisms of immunoediting as a means for immune evasion were suggested by differential gene expression (Ccl1, Hmgb1, Fgl2, Cd209a, and Klra2) and therapy evasion miRNAs (miR-1186, miR-98, miR-5097, miR-1942, and miR-708) in tumors that evaded DC-Ad-GM·CAIX immunotherapy. This is the first study in immunocompetent mice that provides a proof of concept for the specificity, efficacy, safety, and activity of the DC-Ad-GM·CAIX immunotherapy, forming the basis for a first-in-human phase I trial in RCC patients.


Asunto(s)
Vacunas contra el Cáncer/uso terapéutico , Anhidrasas Carbónicas/inmunología , Carcinoma de Células Renales/prevención & control , Carcinoma de Células Renales/terapia , Células Dendríticas/inmunología , Inmunoterapia Adoptiva , Neoplasias Renales/terapia , Animales , Anticuerpos/sangre , Vacunas contra el Cáncer/efectos adversos , Vacunas contra el Cáncer/inmunología , Anhidrasa Carbónica IX , Anhidrasas Carbónicas/biosíntesis , Carcinoma de Células Renales/inmunología , Moléculas de Adhesión Celular/biosíntesis , Línea Celular Tumoral , Quimiocina CCL1/biosíntesis , Modelos Animales de Enfermedad , Femenino , Fibrinógeno/biosíntesis , Expresión Génica , Neoplasias Renales/inmunología , Neoplasias Renales/prevención & control , Lectinas Tipo C/biosíntesis , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , Subfamilia A de Receptores Similares a Lectina de Células NK/biosíntesis , Receptores de Superficie Celular/biosíntesis
16.
Magn Reson Med ; 70(3): 745-53, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23045171

RESUMEN

Narrow-line spin probes derived from the trityl radical have led to the development of fast in vivo time-domain EPR imaging. Pure phase-encoding imaging modalities based on the single-point imaging scheme have demonstrated the feasibility of three-dimensional oximetric images with functional information in minutes. In this article, we explore techniques to improve the temporal resolution and circumvent the relatively short biological half-lives of trityl probes using partial k-space strategies. There are two main approaches: one involves the use of the Hermitian character of the k-space by which only part of the k-space is measured and the unmeasured part is generated using the Hermitian symmetry. This approach is limited in success by the accuracy of numerical estimate of the phase roll in the k-space that corrupts the Hermiticy. The other approach is to measure only a judicially chosen reduced region of k-space (a centrosymmetric ellipsoid region) that more or less accounts for >70% of the k-space energy. Both of these aspects were explored in Fourier transform-EPR imaging with a doubling of scan speed demonstrated by considering ellipsoid geometry of the k-space. Partial k-space strategies help improve the temporal resolution in studying fast dynamics of functional aspects in vivo with infused spin probes.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Algoritmos , Animales , Femenino , Ratones , Ratones Endogámicos C3H , Oximetría , Fantasmas de Imagen , Factores de Tiempo
17.
Front Oncol ; 2: 65, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22783543

RESUMEN

Endometrial cancer is the most commonly diagnosed gynecologic malignancy in the United States. A well recognized disparity by race in both incidence and survival outcome exists for this cancer. Specifically Caucasians are about two times more likely to develop endometrial cancer than are African-Americans. However, African-American women are more likely to die from this disease than are Caucasians. The basis for this disparity remains unknown. Previous studies have identified differences in the types and frequencies of gene mutations among endometrial cancers from Caucasians and African-Americans suggesting that the tumors from these two groups might have differing underlying genetic defects. We performed a gene expression microarray study in an effort to identify differentially expressed transcripts between African-American and Caucasian women's endometrial cancers. Our gene expression screen identified a list of potential biomarkers that are differentially expressed between these two groups of cancers. Of these we identified a poorly characterized transcript with a region of homology to phospho serine phosphatase (PSPH) and designated phospho serine phosphatase like (PSPHL) as the most differentially over-expressed gene in cancers from African-Americans. We further clarified the nature of expressed transcripts. Northern blot analysis confirmed the message was limited to a transcript of under 1 kB. Sequence analysis of transcripts confirmed two alternate open reading frame (ORF) isoforms due to alternative splicing events. Splice specific primer sets confirmed both isoforms were differentially expressed in tissues from Caucasians and African-Americans. We further examined the expression in other tissues from women to include normal endometrium, normal and malignant ovary. In all cases PSPHL expression was more often present in tissues from African-Americans than Caucasians. Our data confirm the African-American based expression of the PSPHL transcript in endometrial cancer and also identify its expression in other tissues from African-Americans including ovary and ovarian cancer. PSPHL represents a candidate gene that might influence the observed racial disparity in endometrial and other cancers.

18.
Cancer Med ; 1(2): 275-88, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23342276

RESUMEN

The prevalence of obesity, an established risk and progression factor for breast and many other cancer types, remains very high in the United States and throughout the world. Calorie restriction (CR), a reduced-calorie dietary regimen typically involving a 20-40% reduction in calorie consumption, prevents or reverses obesity, and inhibits mammary and other types of cancer in multiple tumor model systems. Unfortunately, the mechanisms underlying the tumor inhibitory effects of CR are poorly understood, and a better understanding of these mechanisms may lead to new intervention targets and strategies for preventing or controlling cancer. We have previously shown that the anticancer effects of CR are associated with decreased systemic levels of insulin-like growth factor-1 (IGF-1), the primary source of which is liver. We have also reported that CR strongly suppresses tumor development and growth in multiple mammary cancer models. To identify CR-responsive genes and pathways, and to further characterize the role of IGF-1 as a mediator of the anticancer effects of CR, we assessed hepatic and mammary gland gene expression, hormone levels and growth of orthotopically transplanted mammary tumors in control and CR mice with and without exogenous IGF-1. C57BL/6 mice were fed either control AIN-76A diet ad libitum (AL), subjected to 20%, 30%, or 40% CR plus placebo timed-release pellets, or subjected to 30% or 40% CR plus timed-release pellets delivering murine IGF-1 (mIGF-1, 20 µg/day). Compared with AL-fed controls, body weights were decreased 14.3% in the 20% CR group, 18.5% in the 30% CR group, and 38% in the 40% CR group; IGF-1 infusion had no effect on body weight. Hepatic transcriptome analyses indicated that compared with 20% CR, 30% CR significantly modulated more than twice the number of genes and 40% CR more than seven times the number of genes. Many of the genes specific to the 40% CR regimen were hepatic stress-related and/or DNA damage-related genes. Exogenous IGF-1 rescued the hepatic expression of several metabolic genes and pathways affected by CR. Exogenous IGF-1 also rescued the expression of several metabolism- and cancer-related genes affected by CR in the mammary gland. Furthermore, exogenous IGF-1 partially reversed the mammary tumor inhibitory effects of 30% CR. We conclude that several genes and pathways, particularly those associated with macronutrient and steroid hormone metabolism, are associated with the anticancer effects of CR, and that reduced IGF-1 levels can account, at least in part, for many of the effects of CR on gene expression and mammary tumor burden.


Asunto(s)
Restricción Calórica , Factor I del Crecimiento Similar a la Insulina/metabolismo , Neoplasias Mamarias Animales/prevención & control , Neoplasias Mamarias Animales/terapia , Neoplasias Mamarias Experimentales/terapia , Animales , Dieta , Progresión de la Enfermedad , Femenino , Expresión Génica , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/prevención & control , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Obesidad/complicaciones , Transcriptoma/genética , Proteína Wnt1/genética
19.
J Magn Reson ; 214(1): 244-51, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22188976

RESUMEN

Oxygen maps derived from electron paramagnetic resonance spectral-spatial imaging (EPRI) are based upon the relaxivity of molecular oxygen with paramagnetic spin probes. This technique can be combined with MRI to facilitate mapping of pO(2) values in specific anatomic locations with high precision. The co-registration procedure, which matches the physical and digital dimensions of EPR and MR images, may present the pO(2) map at the higher MRI resolution, exaggerating the spatial resolution of oxygen, making it difficult to precisely distinguish hypoxic regions from normoxic regions. The latter distinction is critical in monitoring the treatment of cancer by radiation and chemotherapy, since it is well-established that hypoxic regions are three or four times more resistant to treatment compared to normoxic regions. The aim of this article is to describe pO(2) maps based on the intrinsic resolution of EPRI. A spectral parameter that affects the intrinsic spatial resolution of EPRI is the full width at half maximum (FWHM) height of the gradient-free EPR absorption line in frequency-encoded imaging. In single point imaging too, the transverse relaxation times (T(2)(∗)) limit the resolution since the signal decays by exp(-t(p)/T(2)(∗)) where the delay time after excitation pulse, t(p), is related to the resolution. Although the spin densities of two point objects may be resolved at this separation, it is inadequate to evaluate quantitative changes of pO(2) levels since the linewidths are proportionately affected by pO(2). A spatial separation of at least twice this resolution is necessary to correctly identify a change in pO(2) level. In addition, the pO(2) values are blurred by uncertainties arising from spectral dimensions. Blurring due to noise and low resolution modulates the pO(2) levels at the boundaries of hypoxic and normoxic regions resulting in higher apparent pO(2) levels in hypoxic regions. Therefore, specification of intrinsic resolution and pO(2) uncertainties are necessary to interpret digitally processed pO(2) illustrations.


Asunto(s)
Algoritmos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Espectroscopía de Resonancia Magnética/métodos , Modelos Químicos , Modelos Moleculares , Oximetría/métodos , Oxígeno/análisis , Simulación por Computador
20.
Cancer Prev Res (Phila) ; 2(12): 1076-87, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19952363

RESUMEN

Energy balance, including diet, weight, adiposity, and physical activity, is associated with carcinogenesis. Epidemiologic studies indicate that obesity and sedentary and/or active behavior are risk factors for breast cancer in postmenopausal women and survival in both premenopausal and postmenopausal breast cancer patients. Thus, understanding the influence of energy balance modulation on changes in gene expression patterns in the normal mammary gland is important for understanding mechanisms linking energy balance and breast cancer. In a 6-week-long study, female C57BL/6 mice (9-week-old) were randomized into four groups: (a) food consumed ad libitum (AL), (b) AL with access to running wheels (AL+EX), (c) 30% calorie restricted (CR), and (d) 30% CR with access to running wheels (CR+EX). CR mice received 70% of calories but 100% of all other nutrients compared with AL mice. Diet and exercise treatments, individually and combined, had significant effects on body composition and physical activity. Affymetrix oligomicroarrays were used to explore changes in gene expression patterns in total RNA samples from excised whole mammary glands. Contrasting AL versus CR resulted in 425 statistically significant expression changes, whereas AL versus AL+EX resulted in 45 changes, with only 3 changes included among the same genes, indicating that CR and EX differentially influence expression patterns in noncancerous mammary tissue. Differential expression was observed in genes related to breast cancer stem cells, the epithelial-mesenchymal transition, and the growth and survival of breast cancer cells. Thus, CR and EX seem to exert their effects on mammary carcinogenesis through distinct pathways.


Asunto(s)
Biomarcadores/metabolismo , Restricción Calórica , Perfilación de la Expresión Génica , Glándulas Mamarias Animales/fisiología , Condicionamiento Físico Animal , Animales , Western Blotting , Ingestión de Energía , Femenino , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...