Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35009359

RESUMEN

Lactoferrin (LF) is a multifunctional milk glycoprotein that promotes bone regeneration. Local delivery of LF at the bone defect site is a promising approach for enhancement of bone regeneration, but efficient systems for sustained local delivery are still largely missing. The aim of this study was to investigate the potential of the poloxamers for sustained delivery of LF to enhance local bone regeneration. The developed LF/poloxamer formulations were liquid at room temperature (20 °C) transforming to a sustained releasing gel depot at body temperature (37 °C). In vitro release studies demonstrated an initial burst release (~50%), followed by slower release of LF for up to 72 h. Poloxamer, with and without LF, increased osteoblast viability at 72 h (p < 0.05) compared to control, and the immune response from THP-1 cells was mild when compared to the suture material. In rat calvarial defects, the LF/poloxamer group had lower bone volume than the controls (p = 0.0435). No difference was observed in tissue mineral density and lower bone defect coverage scores (p = 0.0267) at 12 weeks after surgery. In conclusion, LF/poloxamer formulations support cell viability and do not induce an unfavourable immune response; however, LF delivery via the current formulation of LF200/poloxamer gel did not demonstrate enhanced bone regeneration and was not compatible with the rat calvarial defect model.

2.
Biomaterials ; 263: 120409, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32977258

RESUMEN

Appropriate management of post-operative pain is an ongoing challenge in surgical practice. At present, systemic opioid administration is routinely used for analgesia in the post-operative setting. However, due to significant adverse effects and potential for misuse, there is a perceived need for the development of alternative, opioid-sparing treatment modalities. Continuous infusion of local anesthetic into the peritoneum after major abdominal surgery reduces pain and opioid consumption, and enhances recovery from surgery. Here we describe a non-opioid, poly(ethylene-co-vinyl-acetate) intraperitoneal implant for the sustained delivery of local anesthetic following major abdominal surgery. A radio-opaque core had the required mechanical strength to facilitate placement and removal procedures. This core was enclosed by an outer shell containing an evenly dispersed local anesthetic, lidocaine. Sustained release of lidocaine was observed in an ovine model over days and the movement modelled between peritoneal fluid and circulating plasma. While desirably high levels of lidocaine were achieved in the peritoneal space these were several orders of magnitude higher than blood levels, which remained well below toxic levels. A pharmacokinetic model is presented that incorporates in vitro release data to describe lidocaine concentrations in both peritoneal and plasma compartments, predicting similar release to that suggested by lidocaine concentrations remaining in the device after 3 and 7 days in situ. Histological analysis revealed similar inflammatory responses following implantation of the co-extruded implant and a commercially used silicone drain after three days. This non-opioid analgesic implant provides sustained release of lidocaine in an ovine model and is suitable for moving onto first in human trials.


Asunto(s)
Analgésicos no Narcóticos , Lidocaína , Analgésicos Opioides , Anestésicos Locales , Animales , Humanos , Dolor Postoperatorio/tratamiento farmacológico , Ovinos
3.
Drug Deliv Transl Res ; 8(3): 708-718, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29582351

RESUMEN

An understanding of biological fluids at the site of administration is important to predict the fate of drug delivery systems in vivo. Little is known about peritoneal fluid; therefore, we have investigated this biological fluid and compared it to phosphate-buffered saline, a synthetic media commonly used for in vitro evaluation of intraperitoneal drug delivery systems. Human peritoneal fluid samples were analysed for electrolyte, protein and lipid levels. In addition, physicochemical properties were measured alongside rheological parameters. Significant inter-patient variations were observed with regard to pH (p < 0.001), buffer capacity (p < 0.05), osmolality (p < 0.001) and surface tension (p < 0.05). All the investigated physicochemical properties of peritoneal fluid differed from phosphate-buffered saline (p < 0.001). Rheological examination of peritoneal fluid demonstrated non-Newtonian shear thinning behaviour and predominantly exhibited the characteristics of an entangled network. Inter-patient and inter-day variability in the viscosity of peritoneal fluid was observed. The solubility of the local anaesthetic lidocaine in peritoneal fluid was significantly higher (p < 0.05) when compared to phosphate-buffered saline. Interestingly, the dissolution rate of lidocaine was not significantly different between the synthetic and biological media. Importantly, and with relevance to intraperitoneal drug delivery systems, the sustained release of lidocaine from a thermosensitive gel formulation occurred at a significantly faster rate into peritoneal fluid. Collectively, these data demonstrate the variation between commonly used synthetic media and human peritoneal fluid. The differences in drug release rates observed illustrate the need for bio-relevant media, which ultimately would improve in vitro-in vivo correlation.


Asunto(s)
Líquido Ascítico/química , Sistemas de Liberación de Medicamentos , Cloruro de Sodio/química , Anestésicos Locales/química , Tampones (Química) , Liberación de Fármacos , Electrólitos/análisis , Geles , Humanos , Concentración de Iones de Hidrógeno , Lidocaína/química , Lípidos/análisis , Concentración Osmolar , Proteínas/análisis , Reología , Solubilidad , Propiedades de Superficie
4.
Drug Deliv Transl Res ; 8(3): 820-829, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29411295

RESUMEN

Sustained lidocaine release via a thermoresponsive poloxamer-based in situ gelling system has the potential to alleviate pain following knee arthroplasty. A previously developed formulation showed a promising drug release profile in synthetic phosphate-buffered saline (PBS). To support the translation of this formulation, ex vivo characterisation was warranted. This study therefore aimed (1) to modify the previously developed formulation to reduce the burst release, (2) to compare the release behaviour into ex vivo human intra-articular fluid (IAF) and PBS and (3) to determine the formulation spread in an ex vivo human knee using magnetic resonance imaging (MRI). All formulations provided sustained release out to 72 h; polyvinyl pyrrolidone was the most effective additive yielding a small yet significant decrease (p < 0.05) in the burst release. Release of lidocaine from the formulation occurred significantly faster into IAF compared to PBS (1.4 times greater release in the first 24 h), correlating with faster rates of gel erosion in IAF. Injection was easily achieved through a 21-gauge (G) needle into the synovial space of a human cadaveric knee, and MRI scans revealed effective spreading of the formulation throughout the joint cavity. The pattern of spread is promising for the drug to reach the widespread nerve endings in the joint capsule; the effect of this spread on release in an in vivo setting will be the subject of future studies. The demonstrated properties indicate that the in situ gelling formulation has the potential to be used clinically to treat post-operative pain following knee arthroplasty.


Asunto(s)
Anestésicos Locales/administración & dosificación , Lidocaína/administración & dosificación , Poloxámero/administración & dosificación , Povidona/administración & dosificación , Anestésicos Locales/química , Artroplastia de Reemplazo de Rodilla , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Liberación de Fármacos , Geles , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/metabolismo , Lidocaína/química , Imagen por Resonancia Magnética , Poloxámero/química , Povidona/química , Temperatura
5.
Ther Deliv ; 7(6): 359-68, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27250538

RESUMEN

BACKGROUND: Patients undergoing arthroplasty require appropriate postsurgical pain relief. Analgesia is typically achieved through bolus doses of short-acting local anesthetics and with oral analgesics such as opiates, which are associated with systemic side effects. By formulating an injectable thermosensitive gelling system containing lidocaine, sustained and local delivery can be achieved following a single administration. RESULTS: Poloxamer-based thermosensitive gelling formulations were prepared. Altering the weight ratios of poloxamers affected the sol-to-gel transition temperature, mechanical and rheological properties and in vitro drug release. Desirable formulations gelled between 28 and 33°C providing sustained release of lidocaine over 48 h. CONCLUSION: Thermosensitive gelling systems are promising for sustained drug release following patient administration and may be beneficial in addressing postoperative pain.


Asunto(s)
Preparaciones de Acción Retardada , Geles/química , Lidocaína/química , Poloxámero/química , Liberación de Fármacos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...