Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(25): 10521-10535, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38842042

RESUMEN

A rigid pentadentate chelating ligand (H2L) has been utilized to synthesize a series of octacoordinate mononuclear complexes, [Dy(L)(Ph3PO)(OOCR)] (where R = C6H5 (1), C(CH3)3 (2), CF3 (3)) and a dinuclear complex, [Dy2(L)2(Ph3PO)2{(OOC)2C6H4}] (4) based on the highly anisotropic Dy(III) ion. All the complexes were structurally characterized by single-crystal X-ray diffraction studies. The complexes were formed by the coordination action of the dianionic pentadentate ligand [L]2-, one phosphine oxide, and carboxylate ligands. DC and AC magnetic measurements were performed on 1-4. Complexes 1-4 show SMM behaviour, under zero DC field for 1 and 4, and under 500 Oe and 1000 Oe DC fields for 2 and 3 respectively, with thermally activated, Raman, and Raman and quantum tunnelling dominant relaxation mechanisms for 1 and 2, 3 and 4, respectively.

2.
Dalton Trans ; 53(25): 10592-10602, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38855964

RESUMEN

A series of tri-coordinated zinc alkyl complexes with the general molecular formula [κ2NE-{NHIRP(Ph)(E)N-Dipp}ZnEt] [R = Dipp (2,6-diisopropylphenyl), E = S (3a), Se (3b) and R = tBu (tert-butyl), E = S (4a), Se (4b)] bearing imino-phosphanamidinate chalcogenide ligands were prepared in good yields from the reaction between the protic imino-phosphanamidinate chalcogenide ligand [NHIRP(Ph)(E)NH-Dipp] [R = Dipp, E = S (1a), Se (1b) and R = tBu, E = S (2a), Se (2b)] and diethylzinc at room temperature. The molecular structures of all the zinc complexes were established by single-crystal X-ray diffraction analysis. In the solid state, all complexes exhibited a distorted trigonal planar geometry around the zinc ion. Metal-chalcogenide (Zn-S/Se) interactions were observed in the coordination sphere. These zinc alkyl complexes were employed as pre-catalysts in the hydroboration reaction of nitriles and esters to obtain the corresponding N,N-diborylamines and boronate esters, respectively, under ambient conditions. A wide substrate scope of nitriles and esters is presented.

3.
Dalton Trans ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38921544

RESUMEN

An in situ hydrolysis of the P-Cl bonds of the carbophosphazene [{NC(NMe2)}2{NPCl2}] (LPCl2) in the presence of hydrated lanthanide(III) nitrates in a dichloromethane and methanol (2 : 1) solvent mixture afforded a series of novel 1D coordination polymers: [{Ln(LHPO2)3(NO3)2(CH3OH)(H2O)} (Cl)]n {where Ln(III) = Gd (1), Tb (2), Dy (3), or Er (4) and LHPO2 is the hydrolyzed carbophosphazene (LPCl2) ligand}. X-ray crystallographic analysis revealed that complexes 1-4 are isostructural and crystallized in the monoclinic crystal system having P21/c space group. The coordination polymers are formed because of the involvement of the geminal P(O)(OH) moieties of the carbophosphazene ligand. Each lanthanide(III) ion is 9-coordinate (9O) in a distorted muffin geometry. Magnetic measurements revealed that both DyIII and ErIII analogues exhibit field-induced single-molecule magnet (SMM) behavior at 0.8 kOe and 2.2 k Oe, respectively. At such dc fields, the dynamic magnetic susceptibility displays complex behavior with a triple magnetic relaxation contribution for 3, while two contributions were identified for 4. The observed static and dynamic magnetic behavior for complexes 1-4 were further rationalized with the aid of BS-DFT and CASSCF/SO-RASSI/SINGLE_ANISO calculations.

4.
Chem Asian J ; 19(1): e202300812, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961926

RESUMEN

Phosphonate and phosphate ligands have historically received less attention when compared to the widely prevalent carboxylate ligand system. Phosphonates possess multiple donating sites, often leading to the formation of larger aggregates with limited solubility. Conversely, the P-O bond within phosphates is highly susceptible to hydrolysis, resulting in the precipitation of insoluble compounds, particularly when interacting with lanthanide metal ions. However, over the past few decades, various synthetic approaches have emerged for the preparation and characterization of lanthanide complexes involving both phosphonate and phosphate ligands. Consequently, researchers have delved into exploring the magnetic properties of these complexes, such as their potential as single molecule magnets (SMMs) and their ability to exhibit a magnetocaloric effect (MCE). This review will encompass an examination of the crystal structures and magnetic characteristics of lanthanide complexes featuring phosphonate and phosphate ligands.

5.
Dalton Trans ; 52(45): 16829-16840, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37909254

RESUMEN

A series of novel amidinate ligated four-coordinated boron compounds, [(Ar)-C(tBuN)2BF2] (1BF2-6BF2), were synthesised and structurally characterised (Ar = 1-phenyl, 2-naphthyl, 2-anthryl, 9-anthryl, 9-phenanthryl and 1-pyrene). The increased π-conjugation of Ar-substitution on the amidinate ligand results in dark blue-emission in compounds 3BF2-6BF2. All these compounds are emissive in the solution state. The 2-anthryl substituted compound 3BF2 was found to exhibit a maximum quantum yield of 48% in dichloromethane. Theoretical studies were carried out which validate the hypothesis about the increased π-conjugation.

6.
Dalton Trans ; 52(41): 14807-14821, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37791680

RESUMEN

We report three CoII-based complexes with the general formula [CoII(L)(X)2] by changing the halide/pseudo-halide ions [X = NCSe (1SeCN); Cl (2Cl) and Br (3Br)]. The obtained τ5 and CShM values confirm a distorted square pyramidal geometry around the CoII ion in all these complexes. In these three complexes, the central CoII ion is situated above the basal plane of the square pyramidal geometry. The extent of distortion from the ideal SPY-5 geometry differs upon changing the coordinating halide/pseudo-halide ion in these complexes. This essentially results in the alteration of the anisotropic parameter D and hence impacts the magnetic properties in these complexes. This phenomenon has been corroborated with the aid of theoretical investigations. All these complexes display field-induced SIM behaviour with magnetic relaxation occurring through a combination of processes depending on the applied dc magnetic field values and dilution.

7.
J Org Chem ; 88(17): 12613-12622, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37615400

RESUMEN

We developed a bench-stable iminopyridine-ligated zinc complex for the effective catalytic hydroboration of esters and nitriles under solvent-free conditions. Various esters and nitriles bearing different functionalities were selectively reduced to form corresponding alcohols and amines in good yields. Detailed Hammett plots are provided to explain the electronic effects on the phenyl ring.

8.
Dalton Trans ; 52(30): 10594-10608, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37462111

RESUMEN

The synthesis, structure and magnetic properties of homometallic hexanuclear lanthanide complexes [Ln6(HL)4(tfa)4(S)2]·2NO3·x H2O·yMeOH (1, Ln = Gd, S = MeOH, x = 0, y = 0; 2, Ln = Tb, S = H2O, x = 2, y = 2; 3, Ln = Dy, S = MeOH, x = 0, y = 2; 4, Ln = Er, S = MeOH, x = 0, y = 2). [(H4L) = 6-((bis(2-hydroxyethyl)amino)-N'-(2-hydroxybenzylidene)picolinohydrazide) (tfa = trifloroacetylacetone)] are reported. These hexanuclear assemblies are made up of two trinuclear triangular sub-units linked through the oxygen atoms of two phenoxide bridging groups in a corner sharing arrangement. Magnetic studies reveal that 1 displays a magnetocaloric effect with a maximum value of -ΔSm = 21.03 J kg-1 K-1 at T = 3 K and under an applied field change ΔB = 5 T. Complex 3 shows slow relaxation of magnetization even under zero applied field although a clear maximum in the ac susceptibility plots cannot be seen. However, under an optimal applied field of 0.2 T, clear maxima are observed in the out-of-phase (χ''M) component of the ac susceptibility in the temperature range 3.5 K (2 kHz) to 10.5 K (10 kHz). The temperature dependence of the relaxation times could be fitted to the sum of Orbach, Raman and QTM relaxation processes affording the following parameters: τo = 3.4(9) × 10-8 s, Ueff = 94(2) K, BRaman = 16.43(1) K-n s-1, n = 3.2(3) and τQTM = 0.0044(3) s. 4, under an applied magnetic field of 0.2 T, shows slow relaxation of magnetization through a thermally activated Orbach process with Ueff = 18.2(9) K and τo = 3.5(3) × 10-8 s.

9.
Chem Commun (Camb) ; 59(56): 8727-8730, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37351867

RESUMEN

A cesium imino-phosphanamidinate, [{NHIDippP(Ph)NDipp}Cs], enabling efficient ring-opening (co)polymerization of rac-LA and ε-CL is disclosed. Owing to the highly controlled polymerization, precise di-block copolymers (PLA-b-PCL) with different block lengths can be produced by a simple one-pot reaction. NMR, GPC, DSC and microscopic analyses confirm the production of di-block copolymers with crystalline properties.

10.
Dalton Trans ; 52(23): 7926-7935, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37219089

RESUMEN

A series of differently substituted 2-(2-hydroxyphenyl) benzimidazoles were synthesized by a coupling reaction involving aryl dibromides and 2-hydroxyphenyl benzimidazole. These ligands react with BF3·Et2O to yield the corresponding boron complexes. The photophysical properties of the ligands (L1-L6) and the boron complexes (1-6) were studied in the solution state. Among these, the ligands L1-L4 and L6 displayed aggregation-induced emission (AIE) behavior upon the addition of water in THF resulting in a sizable enhancement of fluorescence intensity. Additionally, compound 5 was found to detect picric acid with a detection limit of 8.33 × 10-7 M.

11.
Dalton Trans ; 52(14): 4481-4493, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36919767

RESUMEN

The synthesis, characterization, and catalytic application of six aluminum alkyl complexes supported by various imino-phosphanamidinate chalcogenide ligands are described. Six different unsymmetrical imino-phosphanamidinate chalcogenide ligands [NHIRP(Ph)(E)NH-Dipp] [R = 2,6-diisopropylphenyl (Dipp), E = S (2a-H), Se (2b-H); R = mesityl (Mes), E = S (3a-H), Se (3b-H); R = tert-butyl (tBu), E = S (4a-H), Se (4b-H)] were prepared by the oxidation of respective imino-phosphanamide ligands (1a, 1b and 1c) with elemental chalcogen atoms (S and Se). The aluminum complexes with imino-phosphanamidinate chalcogenide ligands with the general formulae [κ2NN-{NHIRP(Ph)(E)N-Dipp}AlMe2] [R = Dipp, E = S (5a), Se (5b); R = Mes, E = S (6a), Se (6b)] or [κ2NE-{NHIRP(Ph)(E)N-Dipp}AlMe2] [R = tBu, E = S (7a), Se (7b)] were synthesized in good yields from the reaction of the suitable protic ligands (2a,b-H-4a,b-H) and trimethylaluminum in a 1 : 1 molar ratio in toluene at room temperature. All the protic ligands and aluminum complexes were well characterized by multi-nuclear NMR spectroscopy, and the solid-state structures of 2a,b-H-4a,b-H, 5a,b-6a,b and 7b are established by single crystal X-ray diffraction analysis. The aluminum complexes 5a,b-7a,b were tested as catalysts for the hydroboration of nitriles, alkynes, and alkenes under mild conditions. The catalytic hydroboration reactions of nitriles, alkynes, and alkenes were accomplished with complex 5b at a mild temperature under solvent-free conditions to afford a high yield of the corresponding N,N-diborylamines, vinylboranes and alkyl boronate esters, respectively.

12.
Dalton Trans ; 52(9): 2804-2815, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36752179

RESUMEN

We report the synthesis of [(L)DyIII(Cy3PO)2]·[BPh4] (1-Dy) (where H2L = 2,6-diacetylpyridine bis-benzoylhydrazone and Cy = cyclohexyl) which crystallized in the triclinic, P1̄ space group. The local geometry around Dy(III) in 1-Dy was found to be pentagonal bipyramidal (pseudo-D5h). The AC magnetic susceptibility measurements performed on 1-Dy and on its diluted 1-Y(Dy) samples showed a typical single-molecule magnet signature revealed by the appearance of AC-frequency dependent out-of-phase susceptibility signals in the absence of a static magnetic field. The out-of-phase AC susceptibility signals were well resolved on the application of a small magnetic field (HDC = 500 Oe) and yielded an energy barrier for magnetization flipping of Ueff/kB = 50 K for the diluted derivative. The magnetic studies on 1-Dy and 1-Y(Dy) and data analysis further confirm that Raman and QTM under-barrier magnetic relaxations play a crucial role in lowering Ueff despite the almost axial nature of the Dy(III) ion in 1-Dy. We have rationalized these observations through detailed ab initio calculations performed on the X-ray crystal structure of 1-Dy.

13.
Dalton Trans ; 52(5): 1159-1176, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36602433

RESUMEN

Main-group organometallic compounds containing four-membered C^N chelating rings are being studied because of the interest in harnessing the enhanced reactivity of such compounds which arises as a result of the release of steric strain. In this article, we have reviewed the literature on these systems. This review is organised in terms of the types of ligand systems that allow the assembly of such compounds, viz., compounds containing aliphatic amine motifs, pyridine motifs and aniline motifs. In addition to a discussion on the synthesis and structure, we also examine the reactivity and applications of the main-group element compounds involved. In particular, applications involving H2 activation, carbonyl activation, olefin reduction, C-H activation, hydroalumination, cyanamide oligomerisation, borylation of olefins and heteroarenes, isocyanate activation and C-C bond activation are discussed.

14.
J Org Chem ; 88(8): 5135-5146, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35695675

RESUMEN

Herein we report simple, highly efficient, and phosphine-free N,C-Ru and N,N-Ru catalysts for ligand-controlled borrowing-hydrogen (BH) and interrupted-borrowing-hydrogen (I-BH) methods, respectively. This protocol has been employed on a variety of ketones using MeOH as a green, sustainable, and alternative C1 source to form a C-C bond through the BH and I-BH methods. Reasonably good substrate scope, functional group tolerance, and good-to-excellent yields at 70 °C are the added highlights of these methodologies. Controlled experiments reveal that an in situ formed formaldehyde is one of the crucial elements in this ligand-controlled selective protocol, which upon reaction with a ketone generates an enone as an intermediate. This enone in the presence of the N,C-Ru catalyst and N,N-Ru catalyst through the BH and I-BH pathways yields methylated ketones and 1,5-diketones, respectively.

15.
ACS Omega ; 7(43): 39268-39279, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36340084

RESUMEN

We have explored the impact of electron-donating (methoxy) and electron-withdrawing (nitro) substituents on SalEen ligand based spin crossover (SCO) behavior of Fe(III) complexes. Thus, 3-X-substituted SalEen ligands were employed to prepare [Fe(3-X-SalEen)2]·NCSe, where X = OMe (1), H (2), and NO2 (3) (3-X-SalEen is the condensation product of 3-substituted salicylaldehyde and N-ethylethylenediamine). The characteristic spin transition temperature (T 1/2) is shown to shift to a lower temperature when an electron-donating substituent (OMe) is used and to a higher temperature when an electron-withdrawing substituent (NO2) is used. We used experimental and theoretical methods to determine the reasons for this behavior. The solid-state magnetic data revealed the transition temperatures for complexes 1, 2, and 3 to be 219, 251, and 366 K, respectively. The solution-state magnetic data also support this trend in T 1/2 values. UV-vis spectra analysis indicates that there is greater delocalization in the π-manifold of the ligand when the nitro group is the substituent. Theoretical studies through density functional theory methods suggest the methoxy substituent decreases the energy gap between the t2g and eg orbitals (explaining the lower T 1/2 value), while the nitro substituent increases the energy gap between the t2g and eg orbitals and thus increases the T 1/2 value.

16.
Dalton Trans ; 51(38): 14721-14733, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36106445

RESUMEN

The tetranuclear NiII2LnIII2 complexes, [{L'2{Ni(MeOH)(µ-OAc)}2(µ3-MeO)2Ln2}, LnIII = YIII (1), GdIII (2), TbIII (3), and DyIII (4)], were prepared using a Schiff base ligand, H3L [H3L = 3-{(2-hydroxy-3-methoxybenzylidene)amino}-2-(2-hydroxy-3-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one, where {L'}3- is the deprotonated open structure of H3L]. X-ray crystallographic analysis of 1-4 revealed that all the complexes crystallized in the orthorhombic (Pbcn) space group, and possessed an isostructural tetranuclear butterfly or defect dicubane like core. Direct current magnetic susceptibility measurements performed on 2-4 revealed that all these complexes show an intramolecular ferromagnetic exchange coupling. Well resolved zero-field out-of-phase signals in ac magnetic susceptibility measurements were observed only in the case of 3 (Ueff = 13.4 K; τ0 = 4.1(7) × 10-7 s). This was attributed to the comparatively strong NiII-TbIII magnetic exchange coupling. DFT and ab initio calculations were carried out on 1-4 to ascertain the nature of the ferromagnetic NiII-LnIII (JNi-Ln) and LnIII-LnIII (JLn-Ln) interactions. Magnetic anisotropy and magnetic relaxation mechanisms were discussed in detail for 3 and 4. Theoretical studies provide a rationale for the slow relaxation of magnetization in 3.

17.
Inorg Chem ; 61(37): 14511-14516, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36074754

RESUMEN

A unique B-N coordinated phenanthroimidazole-based zinc salen was synthesized. The zinc salen thus synthesized acts as a photocatalyst for the cycloaddition of carbon dioxide with terminal epoxides under ambient conditions. DFT study of the cycloaddition of carbon dioxide with terminal epoxide indicates the preference of the reaction pathway when photocatalyzed by zinc salen. We anticipate that this strategy will help to design new photocatalysts for CO2 fixation.

18.
ACS Omega ; 7(29): 25881-25890, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35910178

RESUMEN

A series of air-stable mononuclear octacoordinate Ln(III) complexes, [(L)Ln(TPPO)3]OTf (Ln = Y (1·Y); Gd (1·Gd); Tb (1·Tb); Dy (1·Dy); Ho (1·Ho); and Er (1·Er)) and [(L)Ln(TPPO)(NO3)] (Ln = Y (2·Y) and Dy (2·Dy)), are synthesized employing a rigid N3O2-pentadentate chelating ligand as the basis ligand and meridional ancillary ligands (where H2L = 2,6-diacetylpyridine bis-benzoylhydrazone, TPPO = triphenylphosphine oxide, and OTf- = trifluoromethanesulfonate). All the complexes are synthesized under aerobic conditions and characterized comprehensively by spectroscopic and X-ray crystallographic techniques. Magnetic property investigation on the polycrystalline solid samples of 1·Ln (Ln = Gd, Tb, Dy, Ho, and Er) and 2·Dy are reported. A field-induced single-molecule magnet behavior was observed for the Dy derivatives. 1·Dy exhibits the highest effective energy barrier of magnetization reversal, U eff/k B = 47 K under H dc = 1 kOe among the complexes presented herein.

19.
Dalton Trans ; 51(37): 13995-14021, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36040413

RESUMEN

Spin crossover (SCO) is one of the most studied magnetic bistable phenomena because of its application in the field of multifunctional magnetic materials. FeII complexes in a N6 coordination environment have been the most well-studied in terms of their SCO behaviour. Other coordination environments, notably the N4O2 coordination environment, has also been quite effective in inducing SCO behaviour in the corresponding FeII complexes. This review deals with such systems. The three ligand families that are discussed are: Jager type ligands, hydrazone based ligands and tridentate ligands having salicylaldehyde derivatives. These ligands allow the assembly of both mononuclear and multinuclear complexes that exhibit cooperative spin transitions. Also, FeII complexes obtained from some of these ligands are multifunctional and exhibit a coupling of optical and magnetic properties. Most of the FeII complexes obtained from these families of ligands are charge neutral which allows easy surface deposition. Further, modulation of these ligand families allows a fine tuning of the ligand field strength which results in varying SCO behavior. In addition some of the FeII complexes derived from these ligands exhibit a light induced excited spin state trapping (LIESST) effect. All of the above aspects are reviewed in this review.

20.
Inorg Chem ; 61(30): 11600-11621, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35849822

RESUMEN

The synthesis, structure, and magnetic properties of three DyIII complexes of different nuclearity, [Dy2(H2L)2(NO3)] [NO3]·2H2O·CH3OH (1), [Dy4(HL)2(piv)4(OH)2] (2), and [Dy6(H2L)3(µ3-OH)(µ3-CO3)3(CH3OH)4(H2O)8] 5Cl·3H2O (3) [(H4L) = 6-((bis(2-hydroxyethyl)amino)-N'-(2-hydroxybenzylidene)picolinohydrazide)], are described. This variety of complexes with the same ligand could be obtained by playing with the metal-to-ligand molar ratio, the type of DyIII salt, the kind of base, and the presence/absence of coligand. 1 is a dinuclear complex, while 2 is a tetranuclear assembly with a butterfly-shaped topology. 3 is a homometallic hexanuclear complex that exhibits a propeller-shaped topology. Interestingly, in this complex 3, three atmospheric carbon dioxide molecules are trapped in the form of carbonate ions, which assist in holding the hexanuclear complex together. All of the complexes reveal a slow relaxation of magnetization even in zero applied field. Complex 1 is a zero-field SMM with an effective energy barrier (Ueff) of magnetization reversal equal to 87(1) K and a relaxation time of τ0 = 6.4(3) × 10-9 s. Under an applied magnetic field of 0.1 T, these parameters change to Ueff = 101(3) K, τ0 = 2.5(1) × 10-9 s. Complex 2 shows zero-field SMM behavior with Ueff = 31(2) K, τ0 = 4.2(1) × 10-7 s or τ01 = 2(1) × 10-7 s, Ueff1 = 37(8) K, τ02 = 5(6) × 10-5 s, and Ueff2 = 8(4) by considering two Orbach relaxation processes, while 3, also a zero-field SMM, shows a double relaxation of magnetization [Ueff1 = 62.4(3) K, τ01 = 4.6(3) × 10-8 s, and Ueff1 = 2(1) K, τ02 = 4.6(2) × 10-5 s]. The ab initio calculations indicated that in these complexes, the Kramer's ground doublet is characterized by an axial g-tensor with the prevalence of the mJ = ±15/2 component, as well as that due to the weak magnetic coupling between the metal centers, the magnetic relaxation, which is dominated by the single DyIII centers rather than by the exchange-coupled states, takes place via Raman/Orbach or TA-QTM. Moreover, theoretical calculations support a toroidal magnetic state for complex 2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...