Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Clin Transl Radiat Oncol ; 37: 71-77, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36093343

RESUMEN

Purpose: Proton therapy (PT) for partial breast irradiation (PBI) in early-stage breast cancer can decrease morbidity versus photon PBI with superior organs-at-risk sparing. We report 3-year outcomes of the first prospective, multicenter, phase II trial of proton PBI. Methods and Materials: This Proton Collaborative Group phase II trial (PCG BRE007-12) recruited women ≥ 50 years with node-negative, estrogen receptor (ER)-positive, ≤3cm, invasive ductal carcinoma (IDC) or ductal carcinoma in situ undergoing breast conserving surgery followed by proton PBI (40 Gy(RBE), 10 daily fractions). Primary endpoint was freedom from ipsilateral breast cancer recurrence. Adverse events were prospectively graded using CTCAEv4.0. Breast Cancer Treatment Outcome Scale (BCTOS) assessed patient-reported quality of life (PRQOL). Results: Thirty-eight evaluable patients enrolled between 2/2013-11/2016. Median age was 67 years (range 50-79); 55 % had left-sided disease, and median tumor size was 0.9 cm. Treatment was delivered in ≥ 2 fields predominantly with uniform scanning PT (n = 37). At 35-month median follow-up (12-62), all patients were alive, and none had local, regional or distant disease progression. One patient developed an ER-negative contralateral IDC. Seven grade 2 adverse events occurred; no radiotherapy-related grade ≥ 3 toxicities occurred. Changes in BCTOS subdomain mean scores were maximum 0.36, indicating no meaningful change in PRQOL. Median heart volume receiving 5 Gy (V5Gy), lung V20Gy, and lung V10Gy were 0 %, 0 % and 0.19 %, respectively. Conclusion: At 3 years, proton PBI provided 100 % cancer control for early-stage, ER-positive breast cancer. Toxicities are minimal, and PRQOL remains acceptable with continued follow-up. These findings support PT as a safe and effective PBI delivery option.

2.
mBio ; 12(2)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33688010

RESUMEN

Cryptococcus neoformans is a ubiquitous, opportunistic fungal pathogen that kills almost 200,000 people worldwide each year. It is acquired when mammalian hosts inhale the infectious propagules; these are deposited in the lung and, in the context of immunocompromise, may disseminate to the brain and cause lethal meningoencephalitis. Once inside the host, C. neoformans undergoes a variety of adaptive processes, including secretion of virulence factors, expansion of a polysaccharide capsule that impedes phagocytosis, and the production of giant (Titan) cells. The transcription factor Pdr802 is one regulator of these responses to the host environment. Expression of the corresponding gene is highly induced under host-like conditions in vitro and is critical for C. neoformans dissemination and virulence in a mouse model of infection. Direct targets of Pdr802 include the quorum sensing proteins Pqp1, Opt1, and Liv3; the transcription factors Stb4, Zfc3, and Bzp4, which regulate cryptococcal brain infectivity and capsule thickness; the calcineurin targets Had1 and Crz1, important for cell wall remodeling and C. neoformans virulence; and additional genes related to resistance to host temperature and oxidative stress, and to urease activity. Notably, cryptococci engineered to lack Pdr802 showed a dramatic increase in Titan cells, which are not phagocytosed and have diminished ability to directly cross biological barriers. This explains the limited dissemination of pdr802 mutant cells to the central nervous system and the consequently reduced virulence of this strain. The role of Pdr802 as a negative regulator of Titan cell formation is thus critical for cryptococcal pathogenicity.IMPORTANCE The pathogenic yeast Cryptococcus neoformans presents a worldwide threat to human health, especially in the context of immunocompromise, and current antifungal therapy is hindered by cost, limited availability, and inadequate efficacy. After the infectious particle is inhaled, C. neoformans initiates a complex transcriptional program that integrates cellular responses and enables adaptation to the host lung environment. Here, we describe the role of the transcription factor Pdr802 in the response to host conditions and its impact on C. neoformans virulence. We identified direct targets of Pdr802 and also discovered that it regulates cellular features that influence movement of this pathogen from the lung to the brain, where it causes fatal disease. These findings significantly advance our understanding of a serious disease.


Asunto(s)
Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/genética , Células Gigantes/fisiología , Interacciones Huésped-Patógeno , Factores de Transcripción/genética , Animales , Femenino , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Células Gigantes/microbiología , Ratones , Ratones Endogámicos BALB C , Factores de Transcripción/metabolismo , Factores de Virulencia/metabolismo
3.
Mar Pollut Bull ; 165: 112112, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33578188

RESUMEN

Microalgal communities that colonize the hulls of at-risk vessels - those which have the highest port residency times, lowest speeds, and most stationary time in water - are expected to change as a function of environmental factors during ocean voyages, but are rarely studied. The microalgal communities on the hull of an atypically operated ship, the T.S. Golden Bear, were quantified during the course of a voyage from San Francisco Bay to the South Pacific and back. Here we clearly demonstrate that microalgal communities can be highly resilient, and can survive physiologically strenuous journeys through extreme variation in salinity and temperature. A 42% reduction in microalgal biomass and a 62% reduction in algal cellular abundance indicated a community-wide negative reaction to an increase in both salinity and temperature after the ship left San Francisco Bay, CA and cruised southward to Long Beach, although in vivo cellular fluorescence capacity increased. Further reductions in biomass (36%) and cellular abundance (26%) occurred once the ship encountered high-temperature, high-salinity waters in Hawaii. A 17% reduction of cellular fluorescence capacity was also observed in Hawaii. Despite previous environmental stressors, upon return to temperate waters off Vallejo, CA, biomass increased 230%, cellular abundance remained stable, and cellular fluorescence capacity increased from 0.45 ± 0.26 to 0.60 ± 0.07. The methods used in the current research provide efficient, cost-effective procedures for analyzing microalgal (and macrofouling) communities, which can in turn aid regulators in creating such necessary thresholds for enforcement.


Asunto(s)
Microalgas , Hawaii , Salinidad , San Francisco , Navíos
4.
Curr Probl Diagn Radiol ; 49(6): 452-459, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31668368

RESUMEN

Injuries to the syndesmotic ligaments of the ankle or "high ankle sprains" are common in acute ankle trauma but can be difficult to diagnose both clinically and on imaging. Missed injuries to the syndesmosis can lead to chronic ankle instability, which can cause persistent pain and lead to early osteoarthritis. This review will illustrate the anatomy of the syndesmotic ligamentous complex, describe radiographic, CT, and MR imaging of the syndesmosis, demonstrate typical mechanisms of injuries and associated fracture patterns, and provide an overview of important management considerations.


Asunto(s)
Traumatismos del Tobillo/diagnóstico por imagen , Ligamentos Articulares/lesiones , Imagen Multimodal , Esguinces y Distensiones/diagnóstico por imagen , Diagnóstico Diferencial , Humanos , Ligamentos Articulares/anatomía & histología
5.
Br J Radiol ; 93(1107): 20190673, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31600082

RESUMEN

OBJECTIVE: The Pediatric Proton/Photon Consortium Registry (PPCR) is a comprehensive data registry composed of pediatric patients treated with radiation. It was established to expedite outcomes-based research. The attributes which allow the PPCR to be a successful collaboration are reviewed. METHODS AND MATERIALS: Current eligibility criteria are radiotherapy patients < 22 years treated at one of the 15 US participating institutions. Detailed health and treatment data are collected about the disease presentation and treatment exposures, and annually thereafter, in REDCap (Research Electronic Data Capture). DICOM (Digital Imaging and Communications in Medicine) imaging and radiation plans are collected through MIM/MIMcloud. An optional patient-reported quality-of-life (PedsQL) study is administered at 10 sites. RESULTS: Accrual started October 2012 with 2,775 participants enrolled as of 25 July 2019. Most patients, 62.0%, were treated for central nervous system (CNS) tumors, the most common of which are medulloblastoma (n = 349), ependymoma (n = 309), and glial/astrocytoma tumors (n = 279). The most common non-CNS diagnoses are rhabdomyosarcoma (n = 284), Ewing's sarcoma (n = 153), and neuroblastoma (n = 130). While the majority of participants are US residents, 18.7% come from 36 other countries. Over 685 patients participate in the PedsQL study. CONCLUSIONS: The PPCR is a valuable research platform capable of answering countless research questions that will ultimately improve patient care. Centers outside of the USA are invited to participate directly or may engage with the PPCR to align data collection strategies to facilitate large-scale international research. ADVANCES IN KNOWLEDGE: For investigators looking to carry out research in a large pediatric oncology cohort or interested in registry work, this paper provides an updated overview of the PPCR.


Asunto(s)
Recolección de Datos/normas , Neoplasias/radioterapia , Fotones/uso terapéutico , Terapia de Protones/estadística & datos numéricos , Sistema de Registros/estadística & datos numéricos , Adolescente , Astrocitoma/radioterapia , Neoplasias del Sistema Nervioso Central/radioterapia , Neoplasias Cerebelosas/radioterapia , Niño , Preescolar , Nube Computacional , Ependimoma/radioterapia , Femenino , Glioma/radioterapia , Humanos , Lactante , Cooperación Internacional , Masculino , Meduloblastoma/radioterapia , Medición de Resultados Informados por el Paciente , Calidad de Vida , Autoinforme , Adulto Joven
6.
Curr Protoc Microbiol ; 53(1): e79, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30802005

RESUMEN

Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis, which kills 200,000 individuals worldwide each year. It is ubiquitous in the environment and is first inhaled into the lungs of the host, where it is taken up by phagocytes. The interaction of these fungal cells with host phagocytes, therefore, is a critical step in the pathogenesis of this disease. One characteristic of this initial step in host-pathogen interactions is the avidity with which fungal cells are taken up by phagocytes, described by the phagocytic index. In this chapter, we detail a high-throughput method of directly assessing the phagocytic index of fungal cells using an imaging-based paradigm. By automating image collection and processing, this method permits rapid assessment of this critical host interaction. © 2019 by John Wiley & Sons, Inc.


Asunto(s)
Automatización/métodos , Recuento de Colonia Microbiana/métodos , Criptococosis/inmunología , Cryptococcus neoformans/inmunología , Microscopía/métodos , Fagocitosis , Coloración y Etiquetado/métodos , Línea Celular , Criptococosis/microbiología , Humanos , Fagocitos/inmunología
7.
mBio ; 10(1)2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755515

RESUMEN

Cryptococcus neoformans kills 200,000 people worldwide each year. After inhalation, this environmental yeast proliferates either extracellularly or within host macrophages. Under conditions of immunocompromise, cryptococci disseminate from the lungs to the brain, causing a deadly meningoencephalitis that is difficult and expensive to treat. Cryptococcal adaptation to the harsh lung environment is a critical first step in its pathogenesis, and consequently a compelling topic of study. This adaptation is mediated by a complex transcriptional program that integrates cellular responses to environmental stimuli. Although several key regulators in this process have been examined, one that remains understudied in C. neoformans is the Mediator complex. In other organisms, this complex promotes transcription of specific genes by increasing assembly of the RNA polymerase II preinitiation complex. We focused on the Kinase Module of Mediator, which consists of cyclin C (Ssn801), cyclin-dependent kinase 8 (Cdk8), Med12, and Med13. This module provides important inhibitory control of Mediator complex assembly and activity. Using transcriptomics, we discovered that Cdk8 and Ssn801 together regulate cryptococcal functions such as the ability to grow on acetate and the response to oxidative stress, both of which were experimentally validated. Deletion of CDK8 yielded altered mitochondrial morphology and the dysregulation of genes involved in oxidation-reduction processes. This strain exhibited increased susceptibility to oxidative stress, resulting in an inability of mutant cells to proliferate within phagocytes, decreased lung burdens, and attenuated virulence in vivo These findings increase our understanding of cryptococcal adaptation to the host environment and its regulation of oxidative stress resistance and virulence.IMPORTANCECryptococcus neoformans is a fungal pathogen that primarily affects severely immunocompromised patients, resulting in 200,000 deaths every year. This yeast occurs in the environment and can establish disease upon inhalation into the lungs of a mammalian host. In this harsh environment it must survive engulfment by host phagocytes, including the oxidative stresses it experiences inside them. To adapt to these challenging conditions, C. neoformans deploys a variety of regulatory proteins to alter gene expression levels and enhance its ability to survive. We have elucidated the role of a protein complex that regulates the cryptococcal response to oxidative stress, survival within phagocytes, and ability to cause disease. These findings are important because they advance our understanding of cryptococcal disease, which we hope will help in the efforts to control this devastating infection.


Asunto(s)
Adaptación Fisiológica , Cryptococcus neoformans/fisiología , Ciclina C/metabolismo , Quinasa 8 Dependiente de Ciclina/metabolismo , Estrés Oxidativo , Estrés Fisiológico , Animales , Células Cultivadas , Recuento de Colonia Microbiana , Criptococosis/microbiología , Cryptococcus neoformans/genética , Cryptococcus neoformans/crecimiento & desarrollo , Quinasa 8 Dependiente de Ciclina/genética , Modelos Animales de Enfermedad , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Humanos , Pulmón/microbiología , Macrófagos/microbiología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Virulencia
8.
mBio ; 9(6)2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30401774

RESUMEN

Mitochondria are essential organelles that act in pathways including ATP production, ß-oxidation, and clearance of reactive oxygen species. They occur as a complex reticular network that constantly undergoes fusion and fission, mediated by dynamin-related proteins (DRPs). DRPs include Fzo1, which mediates fusion, and Dnm1, Mdv1, and Fis1, which mediate fission. Mitochondrial morphology has been implicated in virulence in multiple fungi, as with the association between virulence and increased mitochondrial fusion in Cryptococcus gattii This relationship, however, has not been studied in Cryptococcus neoformans, a related opportunistic pathogen. C. neoformans is an environmental yeast that can adapt to the human host environment, overcome the innate immune system, and eventually disseminate and cause lethal meningoencephalitis. We used gene deletion of key DRPs to study their role in mitochondrial morphology and pathogenesis of this yeast. Interestingly, increasing mitochondrial fusion did not increase resistance to oxidative stress, unlike in model yeast. Blocking mitochondrial fusion, however, yielded increased susceptibility to oxidative and nitrosative stresses as well as complete avirulence. This lack of virulence was not mediated by any effects of altered mitochondrial function on two major virulence factors, capsule and melanin. Instead, it was due to decreased survival within macrophages, which in turn was a consequence of increased susceptibility to oxidative and nitrosative stress. Supporting this conclusion, reactive oxygen species (ROS) scavengers rescued the ability of fusion mutants to survive intracellularly. These findings increase our understanding of cryptococcal biology and virulence and shed light on an important group of proteins and cellular processes in this pathogen.IMPORTANCEC. neoformans is a yeast that causes fatal brain infection in close to 200,000 people worldwide every year, mainly afflicting individuals with AIDS or others who are severely immunocompromised. One feature of this microbe that helps it cause disease is that it is able to withstand toxic molecules it encounters when host cells engulf it in their efforts to control the infection. Mitochondria are important organelles responsible for energy production and other key cellular processes. They typically exist in a complex network that changes morphology by fusing and dividing; these alterations also influence mitochondrial function. Using genetic approaches, we found that changes in mitochondrial morphology dramatically influence cryptococcal virulence. We showed that this occurs because the altered mitochondria are less able to eliminate the harmful molecules that host cells produce to kill invading microbes. These findings are important because they elucidate fundamental biology and virulence and may suggest avenues for therapy.


Asunto(s)
Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Mitocondrias/genética , Proteínas Mitocondriales/genética , Animales , Criptococosis/microbiología , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Virulencia/genética , Factores de Virulencia
9.
Front Oncol ; 8: 165, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29881715

RESUMEN

BACKGROUND/OBJECTIVES: The Pediatric Proton Consortium Registry (PPCR) was established to expedite proton outcomes research in the pediatric population requiring radiotherapy. Here, we introduce the PPCR as a resource to the oncology community and provide an overview of the data available for further study and collaboration. DESIGN/METHODS: A multi-institutional registry of integrated clinical, dosimetric, radiographic, and patient-reported data for patients undergoing proton radiation therapy was conceived in May 2010. Massachusetts General Hospital began enrollment in July of 2012. Subsequently, 12 other institutions joined the PPCR and activated patient accrual, with the latest joining in 2017. An optional patient-reported quality of life (QoL) survey is currently implemented at six institutions. Baseline health status, symptoms, medications, neurocognitive status, audiogram findings, and neuroendocrine testing are collected. Treatment details of surgery, chemotherapy, and radiation therapy are documented and radiation plans are archived. Follow-up is collected annually. Data were analyzed 25 September, 2017. RESULTS: A total of 1,854 patients have consented and enrolled in the PPCR from October 2012 until September 2017. The cohort is 55% male, 70% Caucasian, and comprised of 79% United States residents. Central nervous system (CNS) tumors comprise 61% of the cohort. The most common CNS histologies are as follows: medulloblastoma (n = 276), ependymoma (n = 214), glioma/astrocytoma (n = 195), craniopharyngioma (n = 153), and germ cell tumors (n = 108). The most common non-CNS tumors diagnoses are as follows: rhabdomyosarcoma (n = 191), Ewing sarcoma (n = 105), Hodgkin lymphoma (n = 66), and neuroblastoma (n = 55). The median follow-up is 1.5 years with a range of 0.14 to 4.6 years. CONCLUSION: A large prospective population of children irradiated with proton therapy has reached a critical milestone to facilitate long-awaited clinical outcomes research in the modern era. This is an important resource for investigators both in the consortium and for those who wish to access the data for academic research pursuits.

10.
Glob Chang Biol ; 24(2): e627-e642, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29216414

RESUMEN

The impacts of changing climate regimes on emergent processes controlling the assembly of ecological communities remain poorly understood. Human alterations to the water cycle in the western United States have resulted in greater interannual variability and more frequent and severe extremes in freshwater flow. The specific mechanisms through which such extremes and climate regime shifts may alter ecological communities have rarely been demonstrated, and baseline information on current impacts of environmental variation is widely lacking for many habitats and communities. Here, we used observations and experiments to show that interannual variation in winter salinity levels in San Francisco Bay controls the mechanisms determining sessile invertebrate community composition during the following summer. We found consistent community changes in response to decadal-scale dry and wet extremes during a 13-year period, producing strikingly different communities. Our results match theoretical predictions of major shifts in species composition in response to environmental forcing up to a threshold, beyond which we observed mass mortality and wholesale replacement of the former community. These results provide a window into potential future community changes, with environmental forcing altering communities by shifting the relative influences of the mechanisms controlling species distributions and abundances. We place these results in the context of historical and projected future environmental variation in the San Francisco Bay Estuary.


Asunto(s)
Cambio Climático , Ecosistema , Estuarios , Invertebrados/clasificación , Animales , Bahías , Clima , Agua Dulce , Humanos , Invertebrados/fisiología , Salinidad , San Francisco , Estaciones del Año , Ciclo Hidrológico
11.
Fungal Genet Biol ; 108: 13-25, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28870457

RESUMEN

C. neoformans is an encapsulated fungal pathogen with defined asexual and sexual life cycles. Due to the availability of genetic and molecular tools for its manipulation, it has become a model organism for studies of fungal pathogens, even though it lacks a reliable system for maintaining DNA fragments as extrachromosomal plasmids. To compensate for this deficiency, we identified a genomic gene-free intergenic region where heterologous DNA could be inserted by homologous recombination without adverse effects on the phenotype of the recipient strain. Since such a site in the C. neoformans genome at a different location has been named previously as "safe haven", we named this locus second safe haven site (SH2). Insertion of DNA into this site in the genome of the KN99 congenic strain pair caused minimal change in the growth of the engineered strain under a variety of in vitro and in vivo conditions. We exploited this 'safe' locus to create a genetically stable highly fluorescent strain expressing mCherry protein (KN99mCH); this strain closely resembled its wild-type parent (KN99α) in growth under a variety of in vitro stress conditions and in the expression of virulence traits. The efficiency of phagocytosis and the proliferation of KN99mCH inside human monocyte-derived macrophages were comparable to those of KN99α, and the engineered strain showed the expected organ dissemination after inoculation, although there was a slight reduction in virulence. The mCherry fluorescence allowed us to measure specific association of cryptococci with leukocytes in the lungs and mediastinal lymph nodes of infected animals and, for the first-time, to assess their live/dead status in vivo. These results highlight the utility of KN99mCH for elucidation of host-pathogen interactions in vivo. Finally, we generated drug-resistant KN99 strains of both mating types that are marked at the SH2 locus with a specific drug resistant gene cassette; these strains will facilitate the generation of mutant strains by mating.


Asunto(s)
Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Proteínas Luminiscentes/genética , Animales , Criptococosis/microbiología , Cryptococcus neoformans/patogenicidad , ADN de Hongos , Femenino , Fluorescencia , Técnicas de Transferencia de Gen , Genes Reporteros , Ratones , Ratones Endogámicos CBA , Mutagénesis Insercional , Fenotipo , Ingeniería de Proteínas , Especificidad de la Especie , Transcripción Genética , Proteína Fluorescente Roja
12.
AJR Am J Roentgenol ; 209(3): 497-510, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28829171

RESUMEN

OBJECTIVE: This article covers the technical aspects and clinical applications of recent advancements in wrist MRI techniques, including T2 and T1rho mapping, compressed sensing, and isotropic 3D imaging using driven equilibrium sequences, variable-flip-angle refocusing pulse sequences, and parallel imaging. The clinical applications of these techniques include the quantitative analysis of cartilage and triangular fibrocartilaginous complex (TFCC) degeneration, faster scanning times, and improved resolution of complex wrist anatomy, allowing differentiation of degenerative from traumatic TFCC tears and improved morphologic evaluation of chondromalacia. CONCLUSION: MRI of the wrist and of the musculoskeletal system has had multiple novel and exciting advancements in recent years. Several of these advancements, such as parallel imaging, are already in clinical use, and others will be entering the clinical realm in the near future. An understanding of these techniques allows one to use their advantages to greatest effect.


Asunto(s)
Diagnóstico por Imagen/métodos , Artropatías/diagnóstico por imagen , Traumatismos de la Muñeca/diagnóstico por imagen , Articulación de la Muñeca/diagnóstico por imagen , Medios de Contraste , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos
13.
Ecology ; 98(9): 2468-2478, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28653399

RESUMEN

The effects of climate-driven stressors on organismal performance and ecosystem functioning have been investigated across many systems; however, manipulative experiments generally apply stressors as constant and simultaneous treatments, rather than accurately reflecting temporal patterns in the natural environment. Here, we assessed the effects of temporal patterns of high aerial temperature and low salinity on survival of Olympia oysters (Ostrea lurida), a foundation species of conservation and restoration concern. As single stressors, low salinity (5 and 10 psu) and the highest air temperature (40°C) resulted in oyster mortality of 55.8, 11.3, and 23.5%, respectively. When applied on the same day, low salinity and high air temperature had synergistic negative effects that increased oyster mortality. This was true even for stressor levels that were relatively mild when applied alone (10 psu and 35°C). However, recovery times of two or four weeks between stressors eliminated the synergistic effects. Given that most natural systems threatened by climate change are subject to multiple stressors that vary in the timing of their occurrence, our results suggest that it is important to examine temporal variation of stressors in order to more accurately understand the possible biological responses to global change.


Asunto(s)
Ecosistema , Ostreidae/fisiología , Salinidad , Estrés Fisiológico , Animales , Cambio Climático , Calor , Temperatura
14.
Proc Biol Sci ; 283(1844)2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27974516

RESUMEN

Climate change is predicted to increase the frequency and severity of extreme events. However, the biological consequences of extremes remain poorly resolved owing to their unpredictable nature and difficulty in quantifying their mechanisms and impacts. One key feature delivering precipitation extremes is an atmospheric river (AR), a long and narrow filament of enhanced water vapour transport. Despite recent attention, the biological impacts of ARs remain undocumented. Here, we use biological data coupled with remotely sensed and in situ environmental data to describe the role of ARs in the near 100% mass mortality of wild oysters in northern San Francisco Bay. In March 2011, a series of ARs made landfall within California, contributing an estimated 69.3% of the precipitation within the watershed and driving an extreme freshwater discharge into San Francisco Bay. This discharge caused sustained low salinities (less than 6.3) that almost perfectly matched the known oyster critical salinity tolerance and was coincident with a mass mortality of one of the most abundant populations throughout this species' range. This is a concern, because wild oysters remain a fraction of their historical abundance and have yet to recover. This study highlights a novel mechanism by which precipitation extremes may affect natural systems and the persistence of sensitive species in the face of environmental change.


Asunto(s)
Atmósfera , Ostreidae/fisiología , Animales , Bahías , California , Cambio Climático , Mortalidad , Salinidad , Vapor
15.
Ecology ; 97(12): 3503-3516, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27912012

RESUMEN

Recruitment of new propagules into a population can be a critical determinant of adult density. We examined recruitment dynamics in the Olympia oyster (Ostrea lurida), a species occurring almost entirely in estuaries. We investigated spatial scales of interannual synchrony across 37 sites in eight estuaries along 2,500 km of Pacific North American coastline, predicting that high vs. low recruitment years would coincide among neighboring estuaries due to shared exposure to regional oceanographic factors. Such synchrony in recruitment has been found for many marine species and some migratory estuarine species, but has never been examined across estuaries in a species that can complete its entire life cycle within the same estuary. To inform ongoing restoration efforts for Olympia oysters, which have declined in abundance in many estuaries, we also investigated predictors of recruitment failure. We found striking contrasts in absolute recruitment rate and frequency of recruitment failure among sites, estuaries, and years. Although we found a positive relationship between upwelling and recruitment, there was little evidence of synchrony in recruitment among estuaries along the coast, and only limited synchrony of sites within estuaries, suggesting recruitment rates are affected more strongly by local dynamics within estuaries than by regional oceanographic factors operating at scales encompassing multiple estuaries. This highlights the importance of local wetland and watershed management for the demography of oysters, and perhaps other species that can complete their entire life cycle within estuaries. Estuaries with more homogeneous environmental conditions had greater synchrony among sites, and this led to the potential for estuary-wide failure when all sites had no recruitment in the same year. Environmental heterogeneity within estuaries may thus buffer against estuary-wide recruitment failure, analogous to the portfolio effect for diversity. Recruitment failure was correlated with lower summer water temperature, higher winter salinity, and shorter residence time: all indicators of stronger marine influence on estuaries. Recruitment failure was also more common in estuaries with limited networks of nearby adult oysters. Large existing oyster networks are thus of high conservation value, while estuaries that lack them would benefit from restoration efforts to increase the extent and connectivity of sites supporting oysters.


Asunto(s)
Ostreidae/fisiología , Distribución Animal , Animales , Canadá , Océano Pacífico , Dinámica Poblacional , Estados Unidos
16.
PeerJ ; 4: e2244, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27547551

RESUMEN

In order to explore biotic attraction to structure, we examined how the amount and arrangement of artificial biotic stalks affected responses of a shrimp, Palaemon macrodactylus, absent other proximate factors such as predation or interspecific competition. In aquaria, we tested the effect of differing densities of both un-branched and branched stalks, where the amount of material in the branched stalk equaled four-times that of the un-branched. The results clearly showed that it was the amount of material, not how it was arranged, that elicited responses from shrimp. Also, although stalks were not purposefully designed to mimic structural elements found in nature, they did resemble biogenic structure such as hydroids, algae, or plants. In order to test shrimp attraction to a different, perhaps more unfamiliar habitat type, we examined responses to plastic "army men." These structural elements elicited similar attraction of shrimp, and, in general, shrimp response correlated well with the fractal dimension of both stalks and army men. Overall, these results indicate that attraction to physical structure, regardless of its nature, may be an important driver of high abundances often associated with complex habitats.

17.
Glob Chang Biol ; 21(7): 2488-2499, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25683857

RESUMEN

Despite the abundance of literature on organismal responses to multiple environmental stressors, most studies have not matched the timing of experimental manipulations with the temporal pattern of stressors in nature. We test the interactive effects of diel-cycling hypoxia with both warming and decreased salinities using ecologically realistic exposures. Surprisingly, we found no evidence of negative synergistic effects on Olympia oyster growth; rather, we found only additive and opposing effects of hypoxia (detrimental) and warming (beneficial). We suspect that diel-cycling provided a temporal refuge that allowed physiological compensation. We also tested for latent effects of warming and hypoxia to low-salinity tolerance using a seasonal delay between stressor events. However, we did not find a latent effect, rather a threshold survival response to low salinity that was independent of early life-history exposure to warming or hypoxia. The absence of synergism is likely the result of stressor treatments that mirror the natural timing of environmental stressors. We provide environmental context for laboratory experimental data by examining field time series environmental data from four North American west coast estuaries and find heterogeneous environmental signals that characterize each estuary, suggesting that the potential stressor exposure to oysters will drastically differ over moderate spatial scales. This heterogeneity implies that efforts to conserve and restore oysters will require an adaptive approach that incorporates knowledge of local conditions. We conclude that studies of multiple environmental stressors can be greatly improved by integrating ecologically realistic exposure and timing of stressors found in nature with organismal life-history traits.

18.
Methods Enzymol ; 549: 451-66, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25432760

RESUMEN

Nucleic acid aptamers find widespread use as targeting and sensing agents in nature and biotechnology. Their ability to bind an extensive range of molecular targets, including small molecules, proteins, and ions, with high affinity and specificity enables their use in diverse diagnostic, therapeutic, imaging, and gene-regulatory applications. Here, we describe methods for characterizing aptamer kinetic and equilibrium binding properties using a surface plasmon resonance-based platform. This aptamer characterization platform is broadly useful for studying aptamer-ligand interactions, comparing aptamer properties, screening functional aptamers during in vitro selection processes, and prototyping aptamers for integration into nucleic acid devices.


Asunto(s)
Aptámeros de Nucleótidos/química , Resonancia por Plasmón de Superficie/métodos , Aptámeros de Nucleótidos/metabolismo , Secuencia de Bases , Sitios de Unión , Técnicas Biosensibles/métodos , Cinética , Ligandos , Datos de Secuencia Molecular , Técnica SELEX de Producción de Aptámeros/métodos
19.
Anal Chem ; 86(7): 3273-8, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24548121

RESUMEN

Nucleic acid aptamers function as versatile sensing and targeting agents for analytical, diagnostic, therapeutic, and gene-regulatory applications, but their limited characterization and functional validation have hindered their broader implementation. We report the development of a surface plasmon resonance-based platform for rapid characterization of kinetic and equilibrium binding properties of aptamers to small molecules. Our system is label-free and scalable and enables analysis of different aptamer-target pairs and binding conditions with the same platform. This method demonstrates improved sensitivity, flexibility, and stability compared to other aptamer characterization methods. We validated our assay against previously reported aptamer affinity and kinetic measurements and further characterized a diverse panel of 12 small molecule-binding RNA and DNA aptamers. We report the first kinetic characterization for six of these aptamers and affinity characterization of two others. This work is the first example of direct comparison of in vitro selected and natural aptamers using consistent characterization conditions, thus providing insight into the influence of environmental conditions on aptamer binding kinetics and affinities, indicating different possible regulatory strategies used by natural aptamers, and identifying potential in vitro selection strategies to improve resulting binding affinities.


Asunto(s)
Aptámeros de Nucleótidos/química , Sitios de Unión , Cinética , Resonancia por Plasmón de Superficie
20.
Nucleic Acids Res ; 40(20): e154, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22810204

RESUMEN

Recent advances have demonstrated the use of RNA-based control devices to program sophisticated cellular functions; however, the efficiency with which these devices can be quantitatively tailored has limited their broader implementation in cellular networks. Here, we developed a high-efficiency, high-throughput and quantitative two-color fluorescence-activated cell sorting-based screening strategy to support the rapid generation of ribozyme-based control devices with user-specified regulatory activities. The high-efficiency of this screening strategy enabled the isolation of a single functional sequence from a library of over 10(6) variants within two sorting cycles. We demonstrated the versatility of our approach by screening large libraries generated from randomizing individual components within the ribozyme device platform to efficiently isolate new device sequences that exhibit increased in vitro cleavage rates up to 10.5-fold and increased in vivo activation ratios up to 2-fold. We also identified a titratable window within which in vitro cleavage rates and in vivo gene-regulatory activities are correlated, supporting the importance of optimizing RNA device activity directly in the cellular environment. Our two-color fluorescence-activated cell sorting-based screen provides a generalizable strategy for quantitatively tailoring genetic control elements for broader integration within biological networks.


Asunto(s)
Citometría de Flujo/métodos , Regulación de la Expresión Génica , ARN Catalítico , Color , Biblioteca de Genes , Genes Reporteros , Cinética , División del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA