Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3065, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594258

RESUMEN

Superconducting quantum circuits are a natural platform for quantum simulations of a wide variety of important lattice models describing topological phenomena, spanning condensed matter and high-energy physics. One such model is the bosonic analog of the well-known fermionic Kitaev chain, a 1D tight-binding model with both nearest-neighbor hopping and pairing terms. Despite being fully Hermitian, the bosonic Kitaev chain exhibits a number of striking features associated with non-Hermitian systems, including chiral transport and a dramatic sensitivity to boundary conditions known as the non-Hermitian skin effect. Here, using a multimode superconducting parametric cavity, we implement the bosonic Kitaev chain in synthetic dimensions. The lattice sites are mapped to frequency modes of the cavity, and the in situ tunable complex hopping and pairing terms are created by parametric pumping at the mode-difference and mode-sum frequencies, respectively. We experimentally demonstrate important precursors of nontrivial topology and the non-Hermitian skin effect in the bosonic Kitaev chain, including chiral transport, quadrature wavefunction localization, and sensitivity to boundary conditions. Our experiment is an important first step towards exploring genuine many-body non-Hermitian quantum dynamics.

2.
Phys Rev Lett ; 127(10): 100503, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34533347

RESUMEN

There has been a growing interest in realizing quantum simulators for physical systems where perturbative methods are ineffective. The scalability and flexibility of circuit quantum electrodynamics make it a promising platform for implementing various types of simulators, including lattice models of strongly coupled field theories. Here, we use a multimode superconducting parametric cavity as a hardware-efficient analog quantum simulator, realizing a lattice in synthetic dimensions with complex hopping interactions. The coupling graph, i.e., the realized model, can be programmed in situ. The complex-valued hopping interaction further allows us to simulate, for instance, gauge potentials and topological models. As a demonstration, we simulate a plaquette of the bosonic Creutz ladder. We characterize the lattice with scattering measurements, reconstructing the experimental Hamiltonian and observing important precursors of topological features including nonreciprocal transport and Aharonov-Bohm caging. This platform can be easily extended to larger lattices and different models involving other interactions.

3.
Phys Rev Lett ; 125(2): 020502, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32701323

RESUMEN

We show that the states generated by a three-mode spontaneous parametric down-conversion (SPDC) interaction Hamiltonian possess tripartite entanglement of a different nature to other paradigmatic three-mode entangled states generated by the combination of two-mode SPDC interactions. While two-mode SPDC generates Gaussian states whose entanglement can be characterized by standard criteria based on two-mode quantum correlations, these criteria fail to capture the entanglement generated by three-mode SPDC. We use criteria built from three-mode correlation functions to show that the class of states recently generated in a superconducting-circuit implementation of three-mode SPDC ideally have tripartite entanglement, contrary to recent claims in the literature. These criteria are suitable for triple SPDC but we show that they fail to detect tripartite entanglement in other states which are known to possess it, which illustrates the existence of two fundamentally different notions of tripartite entanglement in three-mode continuous-variable systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...