Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Heart Assoc ; 13(9): e033410, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38639358

RESUMEN

BACKGROUND: Although several studies have addressed plasma proteomics in heart failure with preserved ejection fraction, limited data are available on the prognostic value of urinary proteomics. The objective of our study was to identify urinary proteins/peptides associated with death and heart failure admission in patients with heart failure with preserved ejection fraction. METHODS AND RESULTS: The study population included participants enrolled in TOPCAT (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial). The relationship between urine protein levels and the risk of death or heart failure admission was assessed using Cox regression, in both nonadjusted analyses and adjusting for urine creatinine levels, and the MAGGIC (Meta-Analysis Global Group in Chronic Heart Failure) score. A total of 426 (12.4%) TOPCAT participants had urinary protein data and were included. There were 40 urinary proteins/peptides significantly associated with death or heart failure admission in nonadjusted analyses, 21 of which were also significant adjusted analyses. Top proteins in the adjusted analysis included ANGPTL2 (angiopoietin-like protein 2) (hazard ratio [HR], 0.5731 [95% CI, 0.47-0.7]; P=3.13E-05), AMY2A (α amylase 2A) (HR, 0.5496 [95% CI, 0.44-0.69]; P=0.0001), and DNASE1 (deoxyribonuclease-1) (HR, 0.5704 [95% CI, 0.46-0.71]; P=0.0002). Higher urinary levels of proteins involved in fibrosis (collagen VI α-1, collagen XV α-1), metabolism (pancreatic α-amylase 2A/B, mannosidase α class 1A member 1), and inflammation (heat shock protein family D member 1, inducible T cell costimulatory ligand) were associated with a lower risk of death or heart failure admission. CONCLUSIONS: Our study identifies several novel associations between urinary proteins/peptides and outcomes in heart failure with preserved ejection fraction. Many of these associations are independent of clinical risk scores and may aid in risk stratification in this patient population.


Asunto(s)
Proteína 2 Similar a la Angiopoyetina , Biomarcadores , Insuficiencia Cardíaca , Proteómica , Volumen Sistólico , Humanos , Insuficiencia Cardíaca/orina , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/fisiopatología , Masculino , Femenino , Proteómica/métodos , Anciano , Biomarcadores/orina , Biomarcadores/sangre , Persona de Mediana Edad , Pronóstico , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Función Ventricular Izquierda , Factores de Riesgo , Medición de Riesgo , Proteinuria/orina , Proteinuria/diagnóstico
2.
BMC Cardiovasc Disord ; 24(1): 94, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326736

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF) frequently co-exist. There is a limited understanding on whether this coexistence is associated with distinct alterations in myocardial remodelling and mechanics. We aimed to determine if patients with atrial fibrillation (AF) and heart failure with preserved ejection fraction (HFpEF) represent a distinct phenotype. METHODS: In this secondary analysis of adults with HFpEF (NCT03050593), participants were comprehensively phenotyped with stress cardiac MRI, echocardiography and plasma fibroinflammatory biomarkers, and were followed for the composite endpoint (HF hospitalisation or death) at a median of 8.5 years. Those with AF were compared to sinus rhythm (SR) and unsupervised cluster analysis was performed to explore possible phenotypes. RESULTS: 136 subjects were included (SR = 75, AF = 61). The AF group was older (76 ± 8 vs. 70 ± 10 years) with less diabetes (36% vs. 61%) compared to the SR group and had higher left atrial (LA) volumes (61 ± 30 vs. 39 ± 15 mL/m2, p < 0.001), lower LA ejection fraction (EF) (31 ± 15 vs. 51 ± 12%, p < 0.001), worse left ventricular (LV) systolic function (LVEF 63 ± 8 vs. 68 ± 8%, p = 0.002; global longitudinal strain 13.6 ± 2.9 vs. 14.7 ± 2.4%, p = 0.003) but higher LV peak early diastolic strain rates (0.73 ± 0.28 vs. 0.53 ± 0.17 1/s, p < 0.001). The AF group had higher levels of syndecan-1, matrix metalloproteinase-2, proBNP, angiopoietin-2 and pentraxin-3, but lower level of interleukin-8. No difference in clinical outcomes was observed between the groups. Three distinct clusters were identified with the poorest outcomes (Log-rank p = 0.029) in cluster 2 (hypertensive and fibroinflammatory) which had equal representation of SR and AF. CONCLUSIONS: Presence of AF in HFpEF is associated with cardiac structural and functional changes together with altered expression of several fibro-inflammatory biomarkers. Distinct phenotypes exist in HFpEF which may have differing clinical outcomes.


Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Imágenes de Resonancia Magnética Multiparamétrica , Humanos , Adulto , Volumen Sistólico , Metaloproteinasa 2 de la Matriz , Función Ventricular Izquierda , Biomarcadores , Fenotipo , Pronóstico
4.
Circ Heart Fail ; 17(2): e011146, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38299345

RESUMEN

BACKGROUND: NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels are variably elevated in heart failure with preserved ejection fraction (HFpEF), even in the presence of increased left ventricular filling pressures. NT-proBNP levels are prognostic in HFpEF and have been used as an inclusion criterion for several recent randomized clinical trials. However, the underlying biologic differences between HFpEF participants with high and low NT-proBNP levels remain to be fully understood. METHODS: We measured 4928 proteins using an aptamer-based proteomic assay (SOMAScan) in available plasma samples from 2 cohorts: (1) Participants with HFpEF enrolled in the PHFS (Penn Heart Failure Study; n=253); (2) TOPCAT (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial) participants in the Americas (n=218). We assessed the relationship between SOMAScan-derived plasma NT-proBNP and levels of other proteins available in the SOMAScan assay version 4 using robust linear regression, with correction for multiple comparisons, followed by pathway analysis. RESULTS: NT-proBNP levels exhibited prominent proteome-wide associations in PHFS and TOPCAT cohorts. Proteins most strongly associated with NT-proBNP in both cohorts included SVEP1 (sushi, von Willebrand factor type-A, epidermal growth factor, and pentraxin domain containing 1; ßTOPCAT=0.539; P<0.0001; ßPHFS=0.516; P<0.0001) and ANGPT2 (angiopoietin 2; ßTOPCAT=0.571; P<0.0001; ßPHFS=0.459; P<0.0001). Canonical pathway analysis demonstrated consistent associations with multiple pathways related to fibrosis and inflammation. These included hepatic fibrosis and inhibition of matrix metalloproteases. Analyses using cut points corresponding to estimated quantitative concentrations of 360 pg/mL (and 480 pg/mL in atrial fibrillation) revealed similar proteomic associations. CONCLUSIONS: Circulating NT-proBNP levels exhibit prominent proteomic associations in HFpEF. Our findings suggest that higher NT-proBNP levels in HFpEF are a marker of fibrosis and inflammation. These findings will aid the interpretation of NT-proBNP levels in HFpEF and may guide the selection of participants in future HFpEF clinical trials.


Asunto(s)
Insuficiencia Cardíaca , Péptido Natriurético Encefálico , Humanos , Volumen Sistólico/fisiología , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Proteómica , Pronóstico , Fragmentos de Péptidos , Inflamación , Fibrosis , Biomarcadores
5.
J Am Heart Assoc ; 13(5): e031154, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38420755

RESUMEN

BACKGROUND: Identifying novel molecular drivers of disease progression in heart failure (HF) is a high-priority goal that may provide new therapeutic targets to improve patient outcomes. The authors investigated the relationship between plasma proteins and adverse outcomes in HF and their putative causal role using Mendelian randomization. METHODS AND RESULTS: The authors measured 4776 plasma proteins among 1964 participants with HF with a reduced left ventricular ejection fraction enrolled in PHFS (Penn Heart Failure Study). Assessed were the observational relationship between plasma proteins and (1) all-cause death or (2) death or HF-related hospital admission (DHFA). The authors replicated nominally significant associations in the Washington University HF registry (N=1080). Proteins significantly associated with outcomes were the subject of 2-sample Mendelian randomization and colocalization analyses. After correction for multiple testing, 243 and 126 proteins were found to be significantly associated with death and DHFA, respectively. These included small ubiquitin-like modifier 2 (standardized hazard ratio [sHR], 1.56; P<0.0001), growth differentiation factor-15 (sHR, 1.68; P<0.0001) for death, A disintegrin and metalloproteinase with thrombospondin motifs-like protein (sHR, 1.40; P<0.0001), and pulmonary-associated surfactant protein C (sHR, 1.24; P<0.0001) for DHFA. In pathway analyses, top canonical pathways associated with death and DHFA included fibrotic, inflammatory, and coagulation pathways. Genomic analyses provided evidence of nominally significant associations between levels of 6 genetically predicted proteins with DHFA and 11 genetically predicted proteins with death. CONCLUSIONS: This study implicates multiple novel proteins in HF and provides preliminary evidence of associations between genetically predicted plasma levels of 17 candidate proteins and the risk for adverse outcomes in human HF.


Asunto(s)
Insuficiencia Cardíaca , Proteómica , Humanos , Proteínas Sanguíneas , Volumen Sistólico , Función Ventricular Izquierda , Análisis de la Aleatorización Mendeliana
6.
Am J Cardiol ; 206: 312-319, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37734292

RESUMEN

Proteinuria is common in heart failure with preserved ejection fraction (HFpEF), but its biologic correlates are poorly understood. We assessed the relation between 49 plasma proteins and the urinary protein/creatinine ratio (UPCR) in 365 participants in the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist Trial. Linear regression and network analysis were used to represent relations between protein biomarkers and UPCR. Higher UPCR was associated with older age, a greater proportion of female gender, smaller prevalence of previous myocardial infarction, and greater prevalence of diabetes, insulin use, smoking, and statin use, in addition to a lower estimated glomerular filtration rate, hematocrit, and diastolic blood pressure. Growth differentiation factor 15 (GDF-15; ß = 0.15, p <0.0001), followed by N-terminal proatrial natriuretic peptide (NT-proANP; ß = 0.774, p <0.0001), adiponectin (ß = 0.0005, p <0.0001), fibroblast growth factor 23 (FGF-23, ß = 0.177; p <0.0001), and soluble tumor necrosis factor receptors I (ß = 0.002, p <0.0001) and II (ß = 0.093, p <0.0001) revealed the strongest associations with UPCR. Network analysis showed that UPCR is linked to various proteins primarily through FGF-23, which, along with GDF-15, indicated node characteristics with strong connectivity, whereas UPCR did not. In a model that included FGF-23 and UPCR, the former was predictive of the risk of death or heart-failure hospital admission (standardized hazard ratio 1.83, 95% confidence interval 1.49 to 2.26, p <0.0001) and/or all-cause death (standardized hazard ratio 1.59, 95% confidence interval 1.22 to 2.07, p = 0.0005), whereas UPCR was not prognostic. Proteinuria in HFpEF exhibits distinct proteomic correlates, primarily through its association with FGF-23, a well-known prognostic marker in HFpEF. However, in contrast to FGF-23, UPCR does not hold independent prognostic value.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Femenino , Factor 15 de Diferenciación de Crecimiento , Creatinina , Volumen Sistólico/fisiología , Proteómica , Biomarcadores , Pronóstico , Proteinuria
7.
Open Heart ; 10(2)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37586847

RESUMEN

OBJECTIVE: To characterise cardiac remodelling, exercise capacity and fibroinflammatory biomarkers in patients with aortic stenosis (AS) with and without diabetes, and assess the impact of diabetes on outcomes. METHODS: Patients with moderate or severe AS with and without diabetes underwent echocardiography, stress cardiovascular magnetic resonance (CMR), cardiopulmonary exercise testing and plasma biomarker analysis. Primary endpoint for survival analysis was a composite of cardiovascular mortality, myocardial infarction, hospitalisation with heart failure, syncope or arrhythmia. Secondary endpoint was all-cause death. RESULTS: Diabetes (n=56) and non-diabetes groups (n=198) were well matched for age, sex, ethnicity, blood pressure and severity of AS. The diabetes group had higher body mass index, lower estimated glomerular filtration rate and higher rates of hypertension, hyperlipidaemia and symptoms of AS. Biventricular volumes and systolic function were similar, but the diabetes group had higher extracellular volume fraction (25.9%±3.1% vs 24.8%±2.4%, p=0.020), lower myocardial perfusion reserve (2.02±0.75 vs 2.34±0.68, p=0.046) and lower percentage predicted peak oxygen consumption (68%±21% vs 77%±17%, p=0.002) compared with the non-diabetes group. Higher levels of renin (log10renin: 3.27±0.59 vs 2.82±0.69 pg/mL, p<0.001) were found in diabetes. Multivariable Cox regression analysis showed diabetes was not associated with cardiovascular outcomes, but was independently associated with all-cause mortality (HR 2.04, 95% CI 1.05 to 4.00; p=0.037). CONCLUSIONS: In patients with moderate-to-severe AS, diabetes is associated with reduced exercise capacity, increased diffuse myocardial fibrosis and microvascular dysfunction, but not cardiovascular events despite a small increase in mortality.


Asunto(s)
Estenosis de la Válvula Aórtica , Diabetes Mellitus , Humanos , Tolerancia al Ejercicio , Renina , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Corazón
8.
Nat Commun ; 13(1): 4065, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831318

RESUMEN

Developmental etiologies causing complex congenital aortic root abnormalities are unknown. Here we show that deletion of Sox17 in aortic root endothelium in mice causes underdeveloped aortic root leading to a bicuspid aortic valve due to the absence of non-coronary leaflet and mispositioned left coronary ostium. The respective defects are associated with reduced proliferation of non-coronary leaflet mesenchyme and aortic root smooth muscle derived from the second heart field cardiomyocytes. Mechanistically, SOX17 occupies a Pdgfb transcriptional enhancer to promote its transcription and Sox17 deletion inhibits the endothelial Pdgfb transcription and PDGFB growth signaling to the non-coronary leaflet mesenchyme. Restoration of PDGFB in aortic root endothelium rescues the non-coronary leaflet and left coronary ostium defects in Sox17 nulls. These data support a SOX17-PDGFB axis underlying aortic root development that is critical for aortic valve and coronary ostium patterning, thereby informing a potential shared disease mechanism for concurrent anomalous aortic valve and coronary arteries.


Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide , Cardiopatías Congénitas , Enfermedades de las Válvulas Cardíacas , Animales , Válvula Aórtica/anomalías , Proteínas HMGB , Ratones , Proteínas Proto-Oncogénicas c-sis , Factores de Transcripción SOXF/genética
9.
Circulation ; 142(20): 1937-1955, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-32929985

RESUMEN

BACKGROUND: Calmodulin mutations are associated with arrhythmia syndromes in humans. Exome sequencing previously identified a de novo mutation in CALM1 resulting in a p.N98S substitution in a patient with sinus bradycardia and stress-induced bidirectional ventricular ectopy. The objectives of the present study were to determine if mice carrying the N98S mutation knocked into Calm1 replicate the human arrhythmia phenotype and to examine arrhythmia mechanisms. METHODS: Mouse lines heterozygous for the Calm1N98S allele (Calm1N98S/+) were generated using CRISPR/Cas9 technology. Adult mutant mice and their wildtype littermates (Calm1+/+) underwent electrocardiographic monitoring. Ventricular de- and repolarization was assessed in isolated hearts using optical voltage mapping. Action potentials and whole-cell currents and [Ca2+]i, as well, were measured in single ventricular myocytes using the patch-clamp technique and fluorescence microscopy, respectively. The microelectrode technique was used for in situ membrane voltage monitoring of ventricular conduction fibers. RESULTS: Two biologically independent knock-in mouse lines heterozygous for the Calm1N98S allele were generated. Calm1N98S/+ mice of either sex and line exhibited sinus bradycardia, QTc interval prolongation, and catecholaminergic bidirectional ventricular tachycardia. Male mutant mice also showed QRS widening. Pharmacological blockade and activation of ß-adrenergic receptors rescued and exacerbated, respectively, the long-QT phenotype of Calm1N98S/+ mice. Optical and electric assessment of membrane potential in isolated hearts and single left ventricular myocytes, respectively, revealed ß-adrenergically induced delay of repolarization. ß-Adrenergic stimulation increased peak density, slowed inactivation, and left-shifted the activation curve of ICa.L significantly more in Calm1N98S/+ versus Calm1+/+ ventricular myocytes, increasing late ICa.L in the former. Rapidly paced Calm1N98S/+ ventricular myocytes showed increased propensity to delayed afterdepolarization-induced triggered activity, whereas in situ His-Purkinje fibers exhibited increased susceptibility for pause-dependent early afterdepolarizations. Epicardial mapping of Calm1N98S/+ hearts showed that both reentry and focal mechanisms contribute to arrhythmogenesis. CONCLUSIONS: Heterozygosity for the Calm1N98S mutation is causative of an arrhythmia syndrome characterized by sinus bradycardia, QRS widening, adrenergically mediated QTc interval prolongation, and bidirectional ventricular tachycardia. ß-Adrenergically induced ICa.L dysregulation contributes to the long-QT phenotype. Pause-dependent early afterdepolarizations and tachycardia-induced delayed afterdepolarizations originating in the His-Purkinje network and ventricular myocytes, respectively, constitute potential sources of arrhythmia in Calm1N98S/+ hearts.


Asunto(s)
Calmodulina , Ventrículos Cardíacos/metabolismo , Mutación Missense , Miocitos Cardíacos/metabolismo , Ramos Subendocárdicos/metabolismo , Síndrome del Seno Enfermo/congénito , Sustitución de Aminoácidos , Animales , Calmodulina/genética , Calmodulina/metabolismo , Modelos Animales de Enfermedad , Ventrículos Cardíacos/fisiopatología , Humanos , Masculino , Ratones , Ratones Transgénicos , Ramos Subendocárdicos/fisiopatología , Síndrome del Seno Enfermo/genética , Síndrome del Seno Enfermo/metabolismo , Síndrome del Seno Enfermo/fisiopatología
10.
Nat Commun ; 9(1): 167, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29330540

RESUMEN

The original version of this Article contained an error in the spelling of the author Jianyun Yan, which was incorrectly given as Jiangyun Yan. This has now been corrected in both the PDF and HTML versions of the Article.

11.
Nat Commun ; 8(1): 1979, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29215012

RESUMEN

Despite the importance of cardiomyocyte proliferation in cardiac development and regeneration, the mechanisms that promote cardiomyocyte cell cycle remain incompletely understood. RE1 silencing transcription factor (REST) is a transcriptional repressor of neuronal genes. Here we show that REST also regulates the cardiomyocyte cell cycle. REST binds and represses the cell cycle inhibitor gene p21 and is required for mouse cardiac development and regeneration. Rest deletion de-represses p21 and inhibits the cardiomyocyte cell cycle and proliferation in embryonic or regenerating hearts. By contrast, REST overexpression in cultured cardiomyocytes represses p21 and increases proliferation. We further show that p21 knockout rescues cardiomyocyte cell cycle and proliferation defects resulting from Rest deletion. Our study reveals a REST-p21 regulatory axis as a mechanism for cell cycle progression in cardiomyocytes, which might be exploited therapeutically to enhance cardiac regeneration.


Asunto(s)
Ciclo Celular/fisiología , Miocitos Cardíacos/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Expresión Génica , Técnicas de Inactivación de Genes , Ratones , Miocardio , Miocitos Cardíacos/patología , Regeneración/efectos de los fármacos , Proteínas Represoras/genética , Proteínas Represoras/farmacología
12.
Nat Commun ; 7: 13710, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27966531

RESUMEN

Interstitial fibrosis plays a key role in the development and progression of heart failure. Here, we show that an enzyme that crosslinks collagen-Lysyl oxidase-like 2 (Loxl2)-is essential for interstitial fibrosis and mechanical dysfunction of pathologically stressed hearts. In mice, cardiac stress activates fibroblasts to express and secrete Loxl2 into the interstitium, triggering fibrosis, systolic and diastolic dysfunction of stressed hearts. Antibody-mediated inhibition or genetic disruption of Loxl2 greatly reduces stress-induced cardiac fibrosis and chamber dilatation, improving systolic and diastolic functions. Loxl2 stimulates cardiac fibroblasts through PI3K/AKT to produce TGF-ß2, promoting fibroblast-to-myofibroblast transformation; Loxl2 also acts downstream of TGF-ß2 to stimulate myofibroblast migration. In diseased human hearts, LOXL2 is upregulated in cardiac interstitium; its levels correlate with collagen crosslinking and cardiac dysfunction. LOXL2 is also elevated in the serum of heart failure (HF) patients, correlating with other HF biomarkers, suggesting a conserved LOXL2-mediated mechanism of human HF.


Asunto(s)
Aminoácido Oxidorreductasas/fisiología , Insuficiencia Cardíaca/metabolismo , Miocardio/patología , Aminoácido Oxidorreductasas/sangre , Aminoácido Oxidorreductasas/metabolismo , Animales , Fibrosis/metabolismo , Humanos , Ratones Noqueados , Miocardio/metabolismo , Estrés Fisiológico
13.
Proc Natl Acad Sci U S A ; 113(38): E5628-35, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27601681

RESUMEN

Genes encoding angiotensin-converting enzymes (Ace and Ace2) are essential for heart function regulation. Cardiac stress enhances Ace, but suppresses Ace2, expression in the heart, leading to a net production of angiotensin II that promotes cardiac hypertrophy and fibrosis. The regulatory mechanism that underlies the Ace2-to-Ace pathological switch, however, is unknown. Here we report that the Brahma-related gene-1 (Brg1) chromatin remodeler and forkhead box M1 (FoxM1) transcription factor cooperate within cardiac (coronary) endothelial cells of pathologically stressed hearts to trigger the Ace2-to-Ace enzyme switch, angiotensin I-to-II conversion, and cardiac hypertrophy. In mice, cardiac stress activates the expression of Brg1 and FoxM1 in endothelial cells. Once activated, Brg1 and FoxM1 form a protein complex on Ace and Ace2 promoters to concurrently activate Ace and repress Ace2, tipping the balance to Ace2 expression with enhanced angiotensin II production, leading to cardiac hypertrophy and fibrosis. Disruption of endothelial Brg1 or FoxM1 or chemical inhibition of FoxM1 abolishes the stress-induced Ace2-to-Ace switch and protects the heart from pathological hypertrophy. In human hypertrophic hearts, BRG1 and FOXM1 expression is also activated in endothelial cells; their expression levels correlate strongly with the ACE/ACE2 ratio, suggesting a conserved mechanism. Our studies demonstrate a molecular interaction of Brg1 and FoxM1 and an endothelial mechanism of modulating Ace/Ace2 ratio for heart failure therapy.


Asunto(s)
Cardiomegalia/metabolismo , ADN Helicasas/genética , Proteína Forkhead Box M1/genética , Insuficiencia Cardíaca/genética , Proteínas Nucleares/genética , Peptidil-Dipeptidasa A/genética , Factores de Transcripción/genética , Angiotensina II/biosíntesis , Angiotensina II/genética , Enzima Convertidora de Angiotensina 2 , Animales , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/genética , Cardiomegalia/patología , ADN Helicasas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Proteína Forkhead Box M1/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Ratones , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Miocardio/metabolismo , Miocardio/patología , Proteínas Nucleares/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Tioestreptona/administración & dosificación , Factores de Transcripción/metabolismo
14.
Biochim Biophys Acta ; 1863(7 Pt B): 1767-71, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26969820

RESUMEN

Our developmental studies provide an insight into the pathogenesis of heart failure in adults. These studies reveal a mechanistic link between fetal cardiomyocytes and pathologically stressed adult cardiomyocytes at the level of chromatin regulation. In embryos, chromatin-regulating factors within the cardiomyocytes respond to developmental signals to program cardiac gene expression to promote cell proliferation and inhibit premature cell differentiation. In the neonatal period, the activity of these developmental chromatin regulators is quickly turned off in cardiomyocytes, coinciding with the cessation of cell proliferation and advance in cell differentiation toward adult maturity. When the mature hearts are pathologically stressed, those chromatin regulators essential for cardiomyocyte development in embryos are reactivated, triggering gene reprogramming to a fetal-like state and pathological cardiac hypertrophy. Furthermore, in the study of chromatin regulation and cardiac gene expression, we identified a long noncoding RNA that interacts with chromatin remodeling factor to regulate the cardiac response to environmental changes. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.


Asunto(s)
Epigénesis Genética , Cardiopatías/genética , Miocitos Cardíacos , ARN Largo no Codificante/genética , Animales , Ensamble y Desensamble de Cromatina , ADN Helicasas/genética , ADN Helicasas/metabolismo , Regulación de la Expresión Génica , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Cardiopatías/metabolismo , Cardiopatías/patología , Cardiopatías/fisiopatología , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , ARN Largo no Codificante/metabolismo , Factores de Riesgo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Biochim Biophys Acta ; 1863(7 Pt B): 1772-81, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26952936

RESUMEN

Chromatin structure is determined by nucleosome positioning, histone modifications, and DNA methylation. How chromatin modifications are coordinately altered under pathological conditions remains elusive. Here we describe a stress-activated mechanism of concerted chromatin modification in the heart. In mice, pathological stress activates cardiomyocytes to express Brg1 (nucleosome-remodeling factor), G9a/Glp (histone methyltransferase), and Dnmt3 (DNA methyltransferase). Once activated, Brg1 recruits G9a and then Dnmt3 to sequentially assemble repressive chromatin-marked by H3K9 and CpG methylation-on a key molecular motor gene (Myh6), thereby silencing Myh6 and impairing cardiac contraction. Disruption of Brg1, G9a or Dnmt3 erases repressive chromatin marks and de-represses Myh6, reducing stress-induced cardiac dysfunction. In human hypertrophic hearts, BRG1-G9a/GLP-DNMT3 complex is also activated; its level correlates with H3K9/CpG methylation, Myh6 repression, and cardiomyopathy. Our studies demonstrate a new mechanism of chromatin assembly in stressed hearts and novel therapeutic targets for restoring Myh6 and ventricular function. The stress-induced Brg1-G9a-Dnmt3 interactions and sequence of repressive chromatin assembly on Myh6 illustrates a molecular mechanism by which the heart epigenetically responds to environmental signals. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.


Asunto(s)
Cardiomegalia/enzimología , Cardiomiopatías/enzimología , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Helicasas/metabolismo , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Miocardio/enzimología , Cadenas Pesadas de Miosina/metabolismo , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Estrés Fisiológico , Factores de Transcripción/metabolismo , Adaptación Fisiológica , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Cardiomiopatías/genética , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Cromatina/genética , Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/deficiencia , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Helicasas/deficiencia , ADN Helicasas/genética , Metilación de ADN , ADN Metiltransferasa 3A , Modelos Animales de Enfermedad , Edad Gestacional , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Humanos , Metilación , Ratones Noqueados , Miocardio/patología , Cadenas Pesadas de Miosina/genética , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Unión Proteica , Procesamiento Proteico-Postraduccional , Recuperación de la Función , Transducción de Señal , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Función Ventricular Izquierda
16.
Nat Commun ; 6: 8245, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26356605

RESUMEN

Mitochondrial dysfunction and metabolic remodelling are pivotal in the development of cardiomyopathy. Here, we show that myocardial COUP-TFII overexpression causes heart failure in mice, suggesting a causal effect of elevated COUP-TFII levels on development of dilated cardiomyopathy. COUP-TFII represses genes critical for mitochondrial electron transport chain enzyme activity, oxidative stress detoxification and mitochondrial dynamics, resulting in increased levels of reactive oxygen species and lower rates of oxygen consumption in mitochondria. COUP-TFII also suppresses the metabolic regulator PGC-1 network and decreases the expression of key glucose and lipid utilization genes, leading to a reduction in both glucose and oleate oxidation in the hearts. These data suggest that COUP-TFII affects mitochondrial function, impairs metabolic remodelling and has a key role in dilated cardiomyopathy. Last, COUP-TFII haploinsufficiency attenuates the progression of cardiac dilation and improves survival in a calcineurin transgenic mouse model, indicating that COUP-TFII may serve as a therapeutic target for the treatment of dilated cardiomyopathy.


Asunto(s)
Factor de Transcripción COUP II/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Insuficiencia Cardíaca/genética , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Factor de Transcripción COUP II/metabolismo , Calcineurina/genética , Cardiomiopatía Dilatada/genética , Respiración de la Célula/genética , Ecocardiografía , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/metabolismo , Masculino , Ratones , Ratones Transgénicos , Dinámicas Mitocondriales , Estrés Oxidativo , Consumo de Oxígeno , Especies Reactivas de Oxígeno , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
RNA Biol ; 12(10): 1094-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26177256

RESUMEN

Long noncoding RNAs (lncRNAs) are pivotal regulators of genome structure and gene expression. LncRNAs can directly interact with chromatin-modifying enzymes and nucleosome-remodeling factors to control chromatin structure and accessibility of genetic information. Moreover, lncRNA expression can be controlled by chromatin-remodeling factors, suggesting a feedback circuit of regulation. Here, we discuss the recent advances of lncRNA studies, focusing on the function and mechanism of lncRNA-chromatin interactions.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Enfermedades Genéticas Congénitas/terapia , ARN Largo no Codificante/genética , Cromatina/genética , Regulación de la Expresión Génica , Enfermedades Genéticas Congénitas/genética , Humanos , ARN/genética , ARN/uso terapéutico , ARN Largo no Codificante/uso terapéutico
18.
Nat Rev Cardiol ; 12(7): 415-25, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25855606

RESUMEN

A large part of the mammalian genome is transcribed into noncoding RNAs. Long noncoding RNAs (lncRNAs) have emerged as critical epigenetic regulators of gene expression. Distinct molecular mechanisms allow lncRNAs either to activate or to repress gene expression, thereby participating in the regulation of cellular and tissue function. LncRNAs, therefore, have important roles in healthy and diseased hearts, and might be targets for therapeutic intervention. In this Review, we summarize the current knowledge of the roles of lncRNAs in cardiac development and ageing. After describing the definition and classification of lncRNAs, we present an overview of the mechanisms by which lncRNAs regulate gene expression. We discuss the multiple roles of lncRNAs in the heart, and focus on the regulation of embryonic stem cell differentiation, cardiac cell fate and development, and cardiac ageing. We emphasize the importance of chromatin remodelling in this regulation. Finally, we discuss the therapeutic and biomarker potential of lncRNAs.


Asunto(s)
Envejecimiento/fisiología , Corazón/crecimiento & desarrollo , ARN Largo no Codificante/fisiología , Envejecimiento/genética , Animales , Epigénesis Genética/fisiología , Corazón/fisiología , Humanos
20.
J Mol Cell Cardiol ; 76: 247-56, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25252177

RESUMEN

An increase of late Na(+) current (INaL) in cardiac myocytes can raise the cytosolic Na(+) concentration and is associated with activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and alterations of mitochondrial metabolism and Ca(2+) handling by sarcoplasmic reticulum (SR). We tested the hypothesis that augmentation of INaL can increase mitochondrial reactive oxygen species (ROS) production and oxidation of CaMKII, resulting in spontaneous SR Ca(2+) release and increased diastolic Ca(2+) in myocytes. Increases of INaL and/or of the cytosolic Na(+) concentration led to mitochondrial ROS production and oxidation of CaMKII to cause dysregulation of Ca(2+) handling in rabbit cardiac myocytes.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Miocitos Cardíacos/enzimología , Sodio/metabolismo , Potenciales de Acción , Animales , Señalización del Calcio , Femenino , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/enzimología , Espacio Intracelular/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Conejos , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA