Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(42): 96474-96485, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37567991

RESUMEN

Tea plantations are expanding globally and many are in mountainous areas with frequent fog but few studies have examined fog chemistry in these areas. We examined chemical composition of fog and rain water at a tea plantation in northern Taiwan. Fog water was collected using a Kroneis passive cylindrical fog-water collector and rain water was collected using a 20-cm-diameter funnel. The most abundant ions were Cl- and Na+ in both fog and rain waters due to the proximity of the site to the coast. The order of abundance of other ions was NO3- > Mg2+ > SO42- > Ca2+ > NH4+ > K+ > H+ in fog water and SO42- > K+ > NO3- > NH4+ > Ca2+ > Mg2+ > H+ in rain water. The concentration enrichment ratio (fog to rain) ranged between 2.2 (K+) and 22 (Mg2+) lying between sites near major emission sources and sites in remote areas, possibly because the immediate surrounding landscape is covered with secondary forests although it is near large cities. Factor analysis highlights the influences of sea-salt aerosols on the variation of fog and rain water chemistry. Sea-salt corrections using Na+ as the sea salt tracer led to negative concentrations of Cl- and Mg2+ suggesting that assumptions involved in sea-salt corrections were not satisfied. Agriculture influence is identified as a unique factor for explaining variance of K+, NH4+, and dissolved organic nitrogen (DON) concentrations in fog water but not rain water. Ion concentrations in fog and rain water were generally higher in the weekly samples associated with air trajectories passing through the continental East Asia than those associated with oceanic trajectories pointing to the role of regional pollution sources in affecting local fog and rain water chemistry. Our study highlights greater effects of tea agriculture on fog than rain water chemistry.


Asunto(s)
Contaminantes Atmosféricos , Agua , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Iones/análisis , Taiwán , , Agua/análisis
2.
Plants (Basel) ; 12(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37050184

RESUMEN

We epigenotyped 211 individuals from 17 Zingiber kawagoii populations using methylation-sensitive amplification polymorphism (MSAP) and investigated the associations of methylated (mMSAP) and unmethylated (uMSAP) loci with 16 environmental variables. Data regarding genetic variation based on amplified fragment length polymorphism (AFLP) were obtained from an earlier study. We found a significant positive correlation between genetic and epigenetic variation. Significantly higher mean mMSAP and uMSAP uHE (unbiased expected heterozygosity: 0.223 and 0.131, respectively, p < 0.001) per locus than that estimated based on AFLP (uHE = 0.104) were found. Genome scans detected 10 mMSAP and 9 uMSAP FST outliers associated with various environmental variables. A significant linear fit for 11 and 12 environmental variables with outlier mMSAP and uMSAP ordination, respectively, generated using full model redundancy analysis (RDA) was found. When conditioned on geography, partial RDA revealed that five and six environmental variables, respectively, were the most important variables influencing outlier mMSAP and uMSAP variation. We found higher genetic (average FST = 0.298) than epigenetic (mMSAP and uMSAP average FST = 0.044 and 0.106, respectively) differentiation and higher genetic isolation-by-distance (IBD) than epigenetic IBD. Strong epigenetic isolation-by-environment (IBE) was found, particularly based on the outlier data, controlling either for geography (mMSAP and uMSAP ßE = 0.128 and 0.132, respectively, p = 0.001) or for genetic structure (mMSAP and uMSAP ßE = 0.105 and 0.136, respectively, p = 0.001). Our results suggest that epigenetic variants can be substrates for natural selection linked to environmental variables and complement genetic changes in the adaptive evolution of Z. kawagoii populations.

3.
Talanta ; 258: 124416, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36889188

RESUMEN

Simultaneous extraction of various types of biomolecule from a single sample can be beneficial for multiomics studies of unique specimens. An efficient and convenient sample preparation approach must be developed that can comprehensively isolate and extract biomolecules from one sample. TRIzol reagent is widely used in biological studies for DNA, RNA, and protein isolation. This study evaluated the feasibility of using TRIzol reagent for the simultaneous isolation of not only DNA, RNA, and proteins but also metabolites and lipids from a single sample. Through the comparison of known metabolites and lipids obtained using the conventional methanol (MeOH) and methyl-tert-butyl ether (MTBE) extraction methods, we determined the presence of metabolites and lipids in the supernatant during TRIzol sequential isolation. Finally, we performed untargeted metabolomics and lipidomics to examine metabolite and lipid alterations associated with the jhp0417 mutation in Helicobacter pylori by using the TRIzol sequential isolation protocol and MeOH and MTBE extraction methods. Metabolites and lipids with significant differences isolated using the TRIzol sequential isolation protocol were consistent with those obtained using the conventional MeOH and MTBE extraction methods. These results indicated that TRIzol reagent can be used to simultaneously isolate metabolites and lipids from a single sample. Thus, TRIzol reagent can be used in biological and clinical research, especially in multiomics studies.


Asunto(s)
Multiómica , ARN , Indicadores y Reactivos , Proteínas , Metanol , Lípidos
4.
Environ Sci Pollut Res Int ; 30(10): 26791-26806, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36371567

RESUMEN

Studies focused on emissions and acid deposition of sulfur (S) and nitrogen (N) and the consequent precipitation acidity have a long history. However, atmospheric depositions of cations play a critical role in buffering precipitation acidity, and providing cationic nutrients for vegetation growth lacks sufficient studies equally. The spatiotemporal patterns of cation depositions and their neutralization potential across broad scales remain unclear. Through synthesizing the long-term data in forest sites (n = 128) derived from three monitoring networks (NADP in Northern America, EMEP in Europe, and EANET in East Asia) on wet deposition of cations (Na+, NH4-N, K+, Mg2+, and Ca2+), this study assesses the temporal changes and spatial patterns of cation depositions and their neutralization potential over the last two decades. The results showed that the depositions of cationic nutrients were considerably higher in EANET compared to NADP and EMEP. The depositions of sea salt-associated sodium exhibited a significant transition from marine (> 15 kg ha-1 year-1) to inland (< 3.0 kg ha-1 year-1) forest sites attributable to the precipitation quantity and influences of sea spray. The higher emissions of NH3 and particulate matter in East Asia explained the higher cation depositions in EANET than NADP and EMEP. The annual trends of cations revealed that only 20-30% of the forest sites showed significant changing trends and the sites widely spread across the three networks. Possibly, base cation (BC) deposition has reached a low and stable condition in NADP and EMEP, while it has high spatial heterogeneity in the temporal change in EANET. The difference in BC deposition among the three networks reflects their distinct development of economy. Our synthesis indicates that the annual trends of neutralization factor (NF) in NADP can be explained by the declining of acid potential (AP), not by neutralization potential (NP) as BC deposition has been stably low over the past two decades. Whereas, the concurrent decreases of AP and NP in EMEP or plateau period of both AP and NP in EANET have come to a standstill of acid neutralizing capacity.


Asunto(s)
Contaminantes Atmosféricos , Bosques , NADP , Asia Oriental , Nitrógeno/análisis , Cationes , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis
5.
Plants (Basel) ; 11(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36235357

RESUMEN

Ecological and evolutionary processes linking adaptation to environment are related to species' range shifts. In this study, we employed amplified-fragment-length-polymorphism-based genome scan methods to identify candidate loci among Zingiber kawagoii populations inhabiting varying environments distributed at low to middle elevations (143-1488 m) in a narrow latitudinal range (between 21.90 and 25.30° N). Here, we show evidence of selection driving the divergence of Z. kawagoii. Twenty-six FST outliers were detected, which were significantly correlated with various environmental variables. The allele frequencies of nine FST outliers were either positively or negatively correlated with the population mean FST. Using several independent approaches, we found environmental variables act in a combinatorial fashion, best explaining outlier genetic variation. Nonetheless, we found that adaptive divergence was affected mostly by annual temperature range, and it is significantly positively correlated with latitude and significantly negatively correlated with the population mean FST. This study addresses a latitudinal pattern of changes in annual temperature range (which ranged from 13.8 °C in the Lanyu population to 18.5 °C in the Wulai population) and emphasizes the pattern of latitudinal population divergence closely linked to the allele frequencies of adaptive loci, acting in a narrow latitudinal range. Our results also indicate environmentally dependent local adaptation for both leading- and trailing-edge populations.

6.
J Environ Qual ; 51(5): 1083-1095, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35833602

RESUMEN

Air pollutants pose risks to human health, especially in densely populated cities. We compared the interception of suspended particles and metal elements by four sidewalk tree species with different leaf surface wettability (based on contact angle), leaf area, and phenology in Taipei, Taiwan. Suspended particles were enriched 2.0-2.5 times in throughfall relative to rainfall due to wash-off of suspended particles deposited on leaf surfaces during rainless periods. The enrichment in throughfall was greater in tree species with larger leaf areas. Despite greater concentrations of suspended particles in rainfall during the low-leaf-area period, enrichment was greater in the high-leaf-area period, indicating that leaf area was a key factor affecting canopy interception of pollutants. Throughfall enrichment of suspended particles positively correlated with water quantity, indicating that air pollutants intercepted by tree canopies were not fully washed off by rainfall. Annually, ∼830 g of suspended particles were intercepted and washed off from one tree canopy, with a crown area of 42 m2 . Scaling up, a rough estimate of 72.7 Mg of suspended particles were intercepted annually by the 90,000 sidewalk trees in Taipei City. Copper, chromium, and aluminum were enriched in throughfall compared with rainfall. However, lead was depleted in throughfall, indicating greater interception than wash-off. Based on our results, leaf area and length of foliated period are key characteristics affecting canopy interception of particulate matter and associated metal elements, whereas leaf surface wettability is of secondary importance.


Asunto(s)
Contaminantes Atmosféricos , Árboles , Contaminantes Atmosféricos/análisis , Aluminio , Cromo , Ciudades , Cobre , Humanos , Material Particulado/análisis , Hojas de la Planta/química , Taiwán , Agua
7.
Plants (Basel) ; 11(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35567227

RESUMEN

The testing association of environmental variables with genetic and epigenetic variation could be crucial to deciphering the effects of environmental factors playing roles as selective drivers in ecological speciation. Although ecological speciation may occur in closely related species, species boundaries may not be established over a short evolutionary timescale. Here, we investigated the genetic and epigenetic variations using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP), respectively, and tested their associations with environmental variables in populations of four closely related species in the R. pseudochrysanthum complex. No distinctive species relationships were found using genetic clustering analyses, neighbor-joining tree, and neighbor-net tree based on the total AFLP variation, which is suggestive of the incomplete lineage sorting of ancestral variation. Nonetheless, strong isolation-by-environment and adaptive divergence were revealed, despite the significant isolation-by-distance. Annual mean temperature, elevation, normalized difference vegetation index, and annual total potential evapotranspiration were found to be the most important environmental variables explaining outlier genetic and epigenetic variations. Our results suggest that the four closely related species of the R. pseudochrysanthum complex share the polymorphism of their ancestor, but reproductive isolation due to ecological speciation can occur if local environmental divergence persists over time.

8.
Sci Total Environ ; 806(Pt 1): 150552, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34844330

RESUMEN

Through synthesizing bulk precipitation chemistry in forest sites (n = 128) from three monitoring networks, (NADP in Northern America, EMEP in Europe, and EANET in East Asia), this study quantifies the temporal changes of precipitation acidity and its dominant acidifying agents over the last two decades. Results show distinct declines of sulfate and nitrate depositions and increases of precipitation pH in northeast America and central and east Europe, but not in Asia during 1999 and 2018. The decreases of sulfate and nitrate depositions likely reflect the long-term effort of pollutant emission controls. The temporal pattern of sulfate (SO42-)/nitrate (NO3-) and ammonium nitrogen (NH4-N)/nitrate nitrogen (NO3-N) equivalent ratios indicate that acid rain in the NADP and EMEP have transitioned from sulfate-dominated to nitrate-dominated, and the DIN deposition has shifted from nitrate-dominated to ammonium-dominated in recent years, owing to reductions of sulfur dioxides (SO2) and nitrogen oxides (NOx) emissions. In contrast, sulfate still plays a dominant role on the acidity of precipitation than nitrate in Asia, and NH4-N deposition also has a significant contribution in N flux due to increasing trends of ammonia emissions in Southeast Asia.


Asunto(s)
Contaminantes Atmosféricos , Nitrógeno , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Bosques , Nitrógeno/análisis , Azufre
9.
RNA ; 27(4): 445-464, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397688

RESUMEN

Pumilio paralogs, PUM1 and PUM2, are sequence-specific RNA-binding proteins that are essential for vertebrate development and neurological functions. PUM1&2 negatively regulate gene expression by accelerating degradation of specific mRNAs. Here, we determined the repression mechanism and impact of human PUM1&2 on the transcriptome. We identified subunits of the CCR4-NOT (CNOT) deadenylase complex required for stable interaction with PUM1&2 and to elicit CNOT-dependent repression. Isoform-level RNA sequencing revealed broad coregulation of target mRNAs through the PUM-CNOT repression mechanism. Functional dissection of the domains of PUM1&2 identified a conserved amino-terminal region that confers the predominant repressive activity via direct interaction with CNOT. In addition, we show that the mRNA decapping enzyme, DCP2, has an important role in repression by PUM1&2 amino-terminal regions. Our results support a molecular model of repression by human PUM1&2 via direct recruitment of CNOT deadenylation machinery in a decapping-dependent mRNA decay pathway.


Asunto(s)
ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Receptores CCR4/genética , Factores de Transcripción/genética , Transcriptoma , Adenosina Monofosfato , Secuencia de Bases , Sitios de Unión , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Células HCT116 , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Unión Proteica , Estabilidad del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores CCR4/metabolismo , Factores de Transcripción/metabolismo
10.
Front Genet ; 11: 580630, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33262787

RESUMEN

Population diversification can be shaped by a combination of environmental factors as well as geographic isolation interacting with gene flow. We surveyed genetic variation of 243 samples from 12 populations of Calocedrus formosana using amplified fragment length polymorphism (AFLP) and scored a total of 437 AFLP fragments using 11 selective amplification primer pairs. The AFLP variation was used to assess the role of gene flow on the pattern of genetic diversity and to test environments in driving population adaptive evolution. This study found the relatively lower level of genetic diversity and the higher level of population differentiation in C. formosana compared with those estimated in previous studies of conifers including Cunninghamia konishii, Keteleeria davidiana var. formosana, and Taiwania cryptomerioides occurring in Taiwan. BAYESCAN detected 26 F ST outlier loci that were found to be associated strongly with various environmental variables using multiple univariate logistic regression, latent factor mixed model, and Bayesian logistic regression. We found several environmentally dependent adaptive loci with high frequencies in low- or high-elevation populations, suggesting their involvement in local adaptation. Ecological factors, including relative humidity and sunshine hours, that are generally not altitude related could have been the most important selective drivers for population divergent evolution in C. formosana. The present study provides fundamental information in relation to adaptive evolution and can be useful for assisted migration program of C. formosana in the future conservation of this species.

11.
Sci Rep ; 10(1): 16658, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028947

RESUMEN

Demographic events are important in shaping the population genetic structure and exon variation can play roles in adaptive divergence. Twelve nuclear genes were used to investigate the species-level phylogeography of Rhododendron oldhamii, test the difference in the average GC content of coding sites and of third codon positions with that of surrounding non-coding regions, and test exon variants associated with environmental variables. Spatial expansion was suggested by R2 index of the aligned intron sequences of all genes of the regional samples and sum of squared deviations statistic of the aligned intron sequences of all genes individually and of all genes of the regional and pooled samples. The level of genetic differentiation was significantly different between regional samples. Significantly lower and higher average GC contents across 94 sequences of the 12 genes at third codon positions of coding sequences than that of surrounding non-coding regions were found. We found seven exon variants associated strongly with environmental variables. Our results demonstrated spatial expansion of R. oldhamii in the late Pleistocene and the optimal third codon position could end in A or T rather than G or C as frequent alleles and could have been important for adaptive divergence in R. oldhamii.


Asunto(s)
Genes de Plantas , Flujo Genético , Variación Genética , Rhododendron/genética , Genética de Población , Filogeografía
12.
Trends Ecol Evol ; 35(7): 594-604, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32521243

RESUMEN

Tropical cyclones are increasing in intensity and size and, thus, are poised to increase in importance as disturbance agents. Our understanding of cyclone ecology is biased towards the North Atlantic Basin, because cyclone effects do differ across oceanic basins. Cyclones have both short and long-term effects across the levels of biological organization, but we lack a scale-perspective of cyclone ecology. Effects on individual trees, such as defoliation or branch stripping and uprooting, are mechanistically linked to effects at the community and ecosystem levels, including forest productivity and stand regeneration time. Forest dwarfing via the gradual removal of taller trees by cyclones over many generations illustrates that cyclones shape forest structure through the accumulation of short-term effects over longer timescales.


Asunto(s)
Tormentas Ciclónicas , Ecología , Ecosistema , Océanos y Mares , Árboles
13.
Nucleic Acids Res ; 48(4): 1843-1871, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31863588

RESUMEN

Pumilio is an RNA-binding protein that represses a network of mRNAs to control embryogenesis, stem cell fate, fertility and neurological functions in Drosophila. We sought to identify the mechanism of Pumilio-mediated repression and find that it accelerates degradation of target mRNAs, mediated by three N-terminal Repression Domains (RDs), which are unique to Pumilio orthologs. We show that the repressive activities of the Pumilio RDs depend on specific subunits of the Ccr4-Not (CNOT) deadenylase complex. Depletion of Pop2, Not1, Not2, or Not3 subunits alleviates Pumilio RD-mediated repression of protein expression and mRNA decay, whereas depletion of other CNOT components had little or no effect. Moreover, the catalytic activity of Pop2 deadenylase is important for Pumilio RD activity. Further, we show that the Pumilio RDs directly bind to the CNOT complex. We also report that the decapping enzyme, Dcp2, participates in repression by the N-terminus of Pumilio. These results support a model wherein Pumilio utilizes CNOT deadenylase and decapping complexes to accelerate destruction of target mRNAs. Because the N-terminal RDs are conserved in mammalian Pumilio orthologs, the results of this work broadly enhance our understanding of Pumilio function and roles in diseases including cancer, neurodegeneration and epilepsy.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Animales , Drosophila melanogaster/genética , Unión Proteica , Dominios Proteicos/genética , Estabilidad del ARN/genética , ARN Mensajero/genética
14.
Life Sci Alliance ; 2(5)2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31570513

RESUMEN

Eukaryotic superfamily (SF) 1 helicases have been implicated in various aspects of RNA metabolism, including transcription, processing, translation, and degradation. Nevertheless, until now, most human SF1 helicases remain poorly understood. Here, we have functionally and biochemically characterized the role of a putative SF1 helicase termed "helicase with zinc-finger," or HELZ. We discovered that HELZ associates with various mRNA decay factors, including components of the carbon catabolite repressor 4-negative on TATA box (CCR4-NOT) deadenylase complex in human and Drosophila melanogaster cells. The interaction between HELZ and the CCR4-NOT complex is direct and mediated by extended low-complexity regions in the C-terminal part of the protein. We further reveal that HELZ requires the deadenylase complex to mediate translational repression and decapping-dependent mRNA decay. Finally, transcriptome-wide analysis of Helz-null cells suggests that HELZ has a role in the regulation of the expression of genes associated with the development of the nervous system.


Asunto(s)
ARN Helicasas/genética , ARN Helicasas/metabolismo , Receptores CCR4/química , Receptores CCR4/metabolismo , Animales , Línea Celular , Drosophila melanogaster , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Estabilidad del ARN , TATA Box
15.
Front Genet ; 10: 742, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31447888

RESUMEN

Populations can be genetically isolated by differences in their ecology or environment that hampered efficient migration, or they may be isolated solely by geographic distance. Moreover, mountain ranges across a species' distribution area might have acted as barriers to gene flow. Genetic variation was quantified using amplified fragment length polymorphism (AFLP) and 13 selective amplification primer combinations used generated a total of 482 fragments. Here, we tested the barrier effects of mountains on gene flow and environmentally dependent local adaptation of Cunninghamia konishii occur in Taiwan. A pattern of genetic isolation by distance was not found and variation partitioning revealed that environment explained a relatively larger proportion of genetic variation than geography. The effect of mountains as barriers to genetic exchange, despite low population differentiation indicating a high rate of gene flow, was found within the distribution range of C. konishii. Twelve AFLP loci were identified as potential selective outliers using genome-scan methods (BAYESCAN and DFDIST) and strongly associated with environmental variables using regression approaches (LFMM, Samßada, and rstanarm) demonstrating adaptive divergence underlying local adaptation. Annual mean temperature, annual precipitation, and slope could be the most important environmental factors causally associated with adaptive genetic variation in C. konishii. The study revealed the existence of physical barriers to current gene flow and environmentally dependent adaptive divergence, and a significant proportion of the rate of gene flow may represent a reflection of demographic history.

16.
Nucleic Acids Res ; 47(17): 9282-9295, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31340047

RESUMEN

XRN1 is the major cytoplasmic exoribonuclease in eukaryotes, which degrades deadenylated and decapped mRNAs in the last step of the 5'-3' mRNA decay pathway. Metazoan XRN1 interacts with decapping factors coupling the final stages of decay. Here, we reveal a direct interaction between XRN1 and the CCR4-NOT deadenylase complex mediated by a low-complexity region in XRN1, which we term the 'C-terminal interacting region' or CIR. The CIR represses reporter mRNA deadenylation in human cells when overexpressed and inhibits CCR4-NOT and isolated CAF1 deadenylase activity in vitro. Through complementation studies in an XRN1-null cell line, we dissect the specific contributions of XRN1 domains and regions toward decay of an mRNA reporter. We observe that XRN1 binding to the decapping activator EDC4 counteracts the dominant negative effect of CIR overexpression on decay. Another decapping activator PatL1 directly interacts with CIR and alleviates the CIR-mediated inhibition of CCR4-NOT activity in vitro. Ribosome profiling revealed that XRN1 loss impacts not only on mRNA levels but also on the translational efficiency of many cellular transcripts likely as a consequence of incomplete decay. Our findings reveal an additional layer of direct interactions in a tightly integrated network of factors mediating deadenylation, decapping and 5'-3' exonucleolytic decay.


Asunto(s)
Proteínas de Unión al ADN/genética , Exorribonucleasas/genética , Proteínas Asociadas a Microtúbulos/genética , Caperuzas de ARN/genética , Estabilidad del ARN/genética , Endorribonucleasas/genética , Humanos , Complejos Multiproteicos/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Proteínas/genética , ARN Mensajero/química , ARN Mensajero/genética , Receptores CCR4/genética , Proteínas Represoras/genética , Transactivadores/genética , Factores de Transcripción/genética
17.
Nat Commun ; 10(1): 3173, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31320642

RESUMEN

CCR4-NOT is a conserved multiprotein complex which regulates eukaryotic gene expression principally via shortening of poly(A) tails of messenger RNA or deadenylation. Here, we reconstitute a complete, recombinant human CCR4-NOT complex. Our reconstitution strategy permits strict compositional control to test mechanistic hypotheses with purified component variants. CCR4-NOT is more active and selective for poly(A) than the isolated exonucleases, CCR4a and CAF1, which have distinct deadenylation profiles in vitro. The exonucleases require at least two out of three conserved non-enzymatic modules (CAF40, NOT10:NOT11 or NOT) for full activity in CCR4-NOT. CAF40 and the NOT10:NOT11 module both bind RNA directly and stimulate deadenylation in a partially redundant manner. Linear motifs from different RNA-binding factors that recruit CCR4-NOT to specific mRNAs via protein-protein interactions with CAF40 can inhibit bulk deadenylation. We reveal an additional layer of regulatory complexity to the human deadenylation machinery, which may prime it either for general or target-specific degradation.


Asunto(s)
Exorribonucleasas/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Receptores CCR4/genética , Humanos , Complejos Multiproteicos/síntesis química , Complejos Multiproteicos/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Poli A/metabolismo , ARN Mensajero/genética , Receptores CCR4/metabolismo , Proteínas Recombinantes/genética , Ribonucleasas/metabolismo , Factores de Transcripción/metabolismo
18.
Hydrol Earth Syst Sci ; 22(12): 6579-6590, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31105411

RESUMEN

Transport of riverine dissolved carbon (including DOC and DIC) is a crucial process linking terrestrial and aquatic C reservoirs, but has rarely been examined in subtropical small mountainous rivers (SMRs). This study monitored DOC and DIC concentrations on a biweekly basis during non-event flow periods and at 3 h intervals during two typhoon events in three SMRs in southwestern Taiwan between January 2014 and August 2016. Two models, HBV (the Hydrologiska Byråns Vattenbalansavdelning model) and a three-endmember mixing model, were applied to determine the quantities of DOC and DIC transport from different flow paths. The results show that the annual DOC and DIC fluxes were 2.7-4.8 and 48.4-54.3 t C km-2 yr-1, respectively, which were approx. 2 and 20 times higher than the global mean of 1.4 and 2.6 t C km-2 yr-1, respectively. The DIC / DOC ratio was 14.08, which is much higher than the mean of large rivers worldwide (1.86), and indicates the high rates of chemical weathering in this region. The two typhoons contributed 12%-14% of the annual streamflow in only 3 days (about 1.0% of the annual time), whereas 15.0%-23.5% and 9.2%-12.6% of the annual DOC and DIC flux, respectively, suggested that typhoons play a more important role in DOC transport than DIC transport. The end-member mixing model suggested that DOC and DIC export was mainly from surface runoff and deep groundwater, respectively. The unique patterns seen in Taiwan SMRs characterized by high dissolved carbon flux, high DIC / DOC ratio, and large transport by intense storms should be taken into consideration when estimating global carbon budgets.

19.
Front Plant Sci ; 9: 1148, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30135693

RESUMEN

The question of what determines divergence both between and within species has been the central topic in evolutionary biology. Neutral drift and environmentally dependent divergence are predicted to play roles in driving population and lineage divergence. However, neutral drift may preclude adaptation if the rate of gene flow between populations is high. Here, we sampled populations of three Taiwania (Taiwania cryptomerioides) lineages occurring in Taiwan, the mainland of China (Yunnan-Myanmar border), and northern Vietnam, and tested the relative strength of neutral drift and divergent selection in shaping divergence of those populations and lineages. We quantified genetic and epigenetic variation, respectively, using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP). Analysis of 1413 AFLP and 462 MSAP loci using frequency-based genome scan methods and generalized linear models (GLMs) found no potential selective outliers when only Taiwanese populations were examined, suggesting that neutral drift was the predominant evolutionary process driving differentiation between those populations. However, environmentally associated divergence was found when lineages were compared. Thirty-two potential selective outliers were identified based on genome scans and their associations with environmental variables were tested with GLMs, generalized linear mixed effect models (GLMMs), and model selection with a model averaging approach. Ten loci (six AFLP and four MSAP) were found to be strongly associated with environmental variables, particularly monthly temperature variation and normalized difference vegetation index (NDVI) using model selection and a model averaging approach. Because only a small portion of genetic and epigenetic loci were found to be potential selective outliers, neutral evolutionary process might also have played crucial roles in driving lineage divergence, particularly between geographically and genetically isolated island and mainland Asia lineages. Nevertheless, the vast amount of neutral drift causing genetic and epigenetic variations might have the potential for adaptation to future climate changes. These could be important for the survival of Taiwania in different geographic areas.

20.
Front Plant Sci ; 9: 92, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29449860

RESUMEN

Double digest restriction site-associated DNA sequencing (ddRADseq) is a tool for delivering genome-wide single nucleotide polymorphism (SNP) markers for non-model organisms useful in resolving fine-scale population structure and detecting signatures of selection. This study performs population genetic analysis, based on ddRADseq data, of a coniferous species, Keteleeria davidiana var. formosana, disjunctly distributed in northern and southern Taiwan, for investigation of population adaptive divergence in response to environmental heterogeneity. A total of 13,914 SNPs were detected and used to assess genetic diversity, FST outlier detection, population genetic structure, and individual assignments of five populations (62 individuals) of K. davidiana var. formosana. Principal component analysis (PCA), individual assignments, and the neighbor-joining tree were successful in differentiating individuals between northern and southern populations of K. davidiana var. formosana, but apparent gene flow between the southern DW30 population and northern populations was also revealed. Fifteen of 23 highly differentiated SNPs identified were found to be strongly associated with environmental variables, suggesting isolation-by-environment (IBE). However, multiple matrix regression with randomization analysis revealed strong IBE as well as significant isolation-by-distance. Environmental impacts on divergence were found between populations of the North and South regions and also between the two southern neighboring populations. BLASTN annotation of the sequences flanking outlier SNPs gave significant hits for three of 23 markers that might have biological relevance to mitochondrial homeostasis involved in the survival of locally adapted lineages. Species delimitation between K. davidiana var. formosana and its ancestor, K. davidiana, was also examined (72 individuals). This study has produced highly informative population genomic data for the understanding of population attributes, such as diversity, connectivity, and adaptive divergence associated with large- and small-scale environmental heterogeneity in K. davidiana var. formosana.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...