Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 265(Pt 2): 130519, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38553393

RESUMEN

Peroxymonosulfate (PMS), which is dominated by non-free radical pathway, has a good removal effect on organic pollutants in complex water matrices. In this article, a biodegradable cobalt-based catalyst (Co3O4/MoS2@NCS) was synthesized by a simple hydrothermal method with chitosan (CS) as nitrogen­carbon precursor and doped with Cobaltic­cobaltous oxide (Co3O4) and Molybdenum disulfide (MoS2), and was used to activate PMS to degrade dye wastewater. Electrochemical tests showed that Co3O4/MoS2@NCS exhibited higher current density and cycling area than MoS2@NCS and MoS2. In the Co3O4/MoS2@NCS/PMS system, the degradation rate of 30 mg·L-1 rhodamine B (RhB) reached 97.75 % within 5 min, and kept as high as 94.34 % after 5 cycles. Its rate constant was 1.91 and 8.37 times that of MoS2@NCS/PMS and MoS2/PMS, respectively. It had good complex background matrices and acid-base anti-interference ability, and had good universality and reusability. The degradation rate of methyl orange (MO) and methylene blue (MB) were more than 91 % within 5 min at pH 4.8. The experimental results demonstrated that MoS2-modified CS as a carrier exposed a large number of active sites, which not only dispersed Co3O4 nanoparticles and improved the stability of the catalyst, but also provided abundant electron rich groups, and promoted the activation of PMS and the production of reactive oxygen species (ROS). PMS was effectively activated by catalytic sites (Co3+/Co2+, Mo4+/Mo5+/Mo6+, CO, pyridine N, pyrrole N, hydroxyl group and unsaturated sulfur), producing a large number of radicals that attack RhB molecules, causing chromophore cleavage, ring opening, and mineralization. Among them, non-free radical 1O2 was the main ROS for RhB degradation. This work is expected to provide a new idea for the design and synthesis of environmentally friendly and efficient MoS2-modified cobalt-based catalysts.


Asunto(s)
Carbono , Quitosano , Óxidos , Peróxidos , Carbono/química , Especies Reactivas de Oxígeno/química , Molibdeno/química , Cobalto/química
2.
Small ; : e2310894, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38431943

RESUMEN

A visible-light-driven CO2 reduction optical fiber is fabricated using graphene-like nitrogen-doped composites and hollow quartz optical fibers to achieve enhanced activity, selectivity, and light utilization for CO2 photoreduction. The composites are synthesized from a lead-based metal-organic framework (TMOF-10-NH2 ) and g-C3 N4 nanosheet (CNNS) via electrostatic self-assembly. The TMOF-10-NH2 /g-C3 N4 (TMOF/CNNS) photocatalyst with an S-type heterojunction is coated on optical fiber. The TMOF/CNNS coating, which has a bandgap energy of 2.15 eV, has good photoinduced capability at the coating interfaces, high photogenerated electron-hole pair yield, and high charge transfer rate. The conduction band potential of the TMOF/CNNS coating is more negative than that for CO2 reduction. Moreover, TMOF facilitates the CO desorption on its surface, thereby improving the selectivity for CO production. High CO2 photoreduction and selectivity for CO production is demonstrated by the TMOF/CNNS-coated optical fiber with the cladding/core diameter of 2000/1000 µm, 10 wt% TMOF in CNNS, coating thickness of 25 µm, initial CO2 concentration of 90 vol%, and relative humidity of 88% RH under the excitation wavelength of 380-780 nm. Overall, the photocatalytic hollow optical fiber developed herein provides an effective and efficient approach for the enhancement of light utilization efficiency of photocatalysts and selective CO2 reduction.

3.
Environ Sci Ecotechnol ; 20: 100374, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38283868

RESUMEN

Microalgal-indigenous bacterial wastewater treatment (MBWT) emerges as a promising approach for the concurrent removal of nitrogen (N) and phosphorus (P). Despite its potential, the prevalent use of MBWT in batch systems limits its broader application. Furthermore, the success of MBWT critically depends on the stable self-adaptation and synergistic interactions between microalgae and indigenous bacteria, yet the underlying biological mechanisms are not fully understood. Here we explore the viability and microbial dynamics of a continuous flow microalgae-indigenous bacteria advanced wastewater treatment system (CFMBAWTS) in processing actual secondary effluent, with a focus on varying hydraulic retention times (HRTs). The research highlights a stable, mutually beneficial relationship between indigenous bacteria and microalgae. Microalgae and indigenous bacteria can create an optimal environment for each other by providing essential cofactors (like iron, vitamins, and indole-3-acetic acid), oxygen, dissolved organic matter, and tryptophan. This collaboration leads to effective microbial growth, enhanced N and P removal, and energy generation. The study also uncovers crucial metabolic pathways, functional genes, and patterns of microbial succession. Significantly, the effluent NH4+-N and P levels complied with the Chinese national Class-II, Class-V, Class-IA, and Class-IB wastewater discharge standards when the HRT was reduced from 15 to 6 h. Optimal results, including the highest rates of CO2 fixation (1.23 g L-1), total energy yield (32.35 kJ L-1), and the maximal lipid (33.91%) and carbohydrate (41.91%) content, were observed at an HRT of 15 h. Overall, this study not only confirms the feasibility of CFMBAWTS but also lays a crucial foundation for enhancing our understanding of this technology and propelling its practical application in wastewater treatment plants.

4.
Bioresour Technol ; 394: 130287, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181998

RESUMEN

Microalgae biochar is potential adsorbents to remove heavy metals from wastewater due to abundant functional groups, high porosity and wide sources, but performance is not fully developed since it depends on microalgae species attributing to distinct morphology and biomass compositions. Here, two microalgae species Chlorella Pyrenoidosa and Scenedesmus Obliquus were used for biochar preparation via KOH-modification, biochar properties and their influences on Ni(II) adsorption were investigated. Ni(II) adsorption performances responding to biochar properties and operating conditions were upgraded via progressive optimization and response surface methodology. Together, adsorption isotherms and kinetics were analyzed to obtain significant factors for Ni(II) removal. As results, 100 % of Ni(II) removal was achieved under 100 mg/L initial Ni(II) concentration as pH was higher than the biochar zero-charge point of 6.87 with low biochar dosage (0.5 g/L), which provides an efficient approach for heavy metal removal from wastewater with microalgae biochar.


Asunto(s)
Chlorella , Metales Pesados , Microalgas , Contaminantes Químicos del Agua , Adsorción , Aguas Residuales , Carbón Orgánico/química , Cinética
5.
Sci Total Environ ; 901: 166029, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37541493

RESUMEN

With the overuse of antibiotics, antibiotic resistance gene (ARG) prevalence is gradually increasing. ARGs are considered emerging contaminants that are broadly concentrated and dispersed in most aquatic environments. Recently, interest in microalgal-bacterial biotreatment of antibiotics has increased, as eukaryotes are not the primary target of antimicrobial drugs. Moreover, research has shown that microalgal-bacterial consortia can minimize the transmission of antibiotic resistance in the environment. Unfortunately, reviews surrounding the ARG migration mechanism in microalgal-bacterial consortia have not yet been performed. This review briefly introduces the migration of ARGs in aquatic environments. Additionally, an in-depth summary of horizontal gene transfer (HGT) between cyanobacteria and bacteria and from bacteria to eukaryotic microalgae is presented. Factors influencing gene transfer in microalgal-bacterial consortia are discussed systematically, including bacteriophage abundance, environmental conditions (temperature, pH, and nutrient availability), and other selective pressure conditions including nanomaterials, heavy metals, and pharmaceuticals and personal care products. Furthermore, considering that quorum sensing could be involved in DNA transformation by affecting secondary metabolites, current knowledge surrounding quorum sensing regulation of HGT of ARGs is summarized. In summary, this review gives valuable information to promote the development of practical and innovative techniques for ARG removal by microalgal-bacterial consortia.

6.
Chemosphere ; 336: 139183, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37302499

RESUMEN

Microalgae-based techniques are considered an alternative to traditional activated sludge processes for removing nitrogen from wastewater. Bacteria consortia have been broadly conducted as one of the most important partners. However, fungal effects on the removal of nutrients and changes in physiological properties of microalgae, and their impact mechanisms remain unclear. The current work demonstrates that, adding fungi increased the nitrogen assimilation of microalgae and the generation of carbohydrates compared to pure microalgal cultivation. The NH4+-N removal efficiency was 95.0% within 48 h using the microalgae-fungi system. At 48 h, total sugars (glucose, xylose, and arabinose) accounted for 24.2 ± 4.2% per dry weight in the microalgae-fungi group. Gene ontology (GO) enrichment analysis revealed that, among various processes, phosphorylation and carbohydrate metabolic processes were more prominent. Gene encoding the key enzymes of glycolysis, pyruvate kinase, and phosphofructokinase were significantly up-regulated. Overall, for the first time, this study provides new insights into the art of microalgae-fungi consortia for producing value-added metabolites.


Asunto(s)
Debaryomyces , Microalgas , Microalgas/metabolismo , Debaryomyces/metabolismo , Nitrógeno/metabolismo , Biomasa , Glucosa/metabolismo
7.
Int J Biol Macromol ; 239: 124266, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37003391

RESUMEN

In order to improve the stability, electrostatic interaction and ion exchange ability of chitosan for Cr (VI) removal, it is an effective strategy to introduce polyvalent metal ions and polymers into chitosan molecular chain through crosslinking. In this paper, Zr4+ and glutaraldehyde crosslinked polyethyleneimine functionalized chitosan (CGPZ) composite was successfully synthesized and characterized by XRD, SEM, FTIR, BET, and XPS. The results showed that polyethyleneimine was successfully grafted onto chitosan by Schiff base reaction, while the appearance of ZrO and ZrN bonds verified the successful preparation of CGPZ. The monolayer maximum adsorption capacity of Cr(VI) by CGPZ was 593.72 mg g-1 at 298 K and t = 210 min. The removal efficiency of 100 mg L-1 Cr(VI) reached 95.7 %. The thermodynamic, isotherm and kinetic results show that the adsorption process of Cr (VI) by CGPZ is a spontaneous endothermic process controlled by entropy, which accords with Freundlich model and pseudo-second-order kinetic model. The regeneration experiments show that both HCl and NaOH can effectively desorb Cr(III) and Cr(VI) from the adsorbent surface, and the adsorbent has good acid-base resistance and regeneration performance. The removal of Cr(VI) mainly involves electrostatic attraction, ion exchange, reduction and complexation. CGPZ can synergistically adsorb Cr(VI) by electrostatic interaction of -NH2/-C=N and ion exchange of Cl- ion in the center of Zr, then reduce Cr(VI) to Cr(III) (45.4 % at pH = 2.0) by the -OH group on its surface, and chelate Cr(III) through COO- and -NH- groups.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Purificación del Agua , Quitosano/química , Glutaral , Polietileneimina , Adsorción , Cromo/química , Iones , Cinética , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Purificación del Agua/métodos
8.
Chemosphere ; 325: 138399, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36925002

RESUMEN

In order to develop efficient photoanode to improve the performance of visible light responsive photocatalytic fuel cell (PFC), in this work, polyaniline/g-C3N4/Bi2O3/Ti photoanode was successfully prepared using silica-sol drop coating method, and assembled with Cu cathode to construct PFC to decompose rhodamine B and generate electricity simultaneously. The degradation rate, maximum photocurrent density and maximum power density of this PFC were 91.23%, 0.086 mA cm-2 and 4.78 µW cm-2, respectively, which were 1.4 and 1.8 times, 2.4 and 4.5 times, and 1.9 and 7.3 times those of the corresponding values of the PFCs with g-C3N4/Bi2O3/Ti and Bi2O3/Ti photoanodes, respectively. This is attributed to the type II heterojunction structure formed among polyaniline, g-C3N4 and Bi2O3 in the polyaniline/g-C3N4/Bi2O3/Ti photoanode. Among them, polyaniline has π-π conjugated structure, which can rapidly transfer the electronic charge between g-C3N4 and Bi2O3, thus enhancing the separation efficiency of photo-generated e--h+ pairs spatially and reducing their recombination, extending the visible light response wavelength of the photocatalyst, and finally improving its photocatalytic properties. This study can provide significant reference for the research of Bi2O3-based visible light responsive PFC.


Asunto(s)
Luz , Titanio , Titanio/química , Electricidad
9.
Environ Res ; 227: 115730, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36958384

RESUMEN

Due to anthropogenic emissions, there is an increase in the concentration of carbon dioxide (CO2) in the atmosphere. Microalgae are versatile, universal, and photosynthetic microorganisms present in nature. Biological CO2 sequestration using microalgae is a novel concept in CO2 mitigation strategies. In the current review, the difference between carbon capture and storage (CCS), carbon capture utilization and storage (CCUS), and carbon capture and utilization (CCU) is clarified. The current status of CO2 sequestration techniques is discussed, including various methods and a comparative analysis of abiotic and biotic sequestration. Particular focus is given to sequestration methods associated with microalgae, including advantages of CO2 bio-sequestration using microalgae, a summary of microalgae species that tolerate high CO2 concentrations, biochemistry of microalgal CO2 biofixation, and elements influencing the microalgal CO2 sequestration. In addition, this review highlights and summarizes the research efforts made on the production of various biofuels using microalgae. Notably, Chlorella sp. is found to be the most beneficial microalgae, with a sizeable hydrogen (H2) generation capability ranging from 6.1 to 31.2 mL H2/g microalgae, as well as the species of C. salina, C. fusca, Parachlorella kessleri, C. homosphaera, C. vacuolate, C. pyrenoidosa, C. sorokiniana, C. lewinii, and C. protothecoides. Lastly, the technical feasibility and life cycle analysis are analyzed. This comprehensive review will pave the way for promoting more aggressive research on microalgae-based CO2 sequestration.


Asunto(s)
Chlorella , Microalgas , Animales , Dióxido de Carbono/análisis , Biocombustibles , Estadios del Ciclo de Vida , Biomasa
10.
Water Res ; 231: 119578, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36645942

RESUMEN

Bioconversion of nutrients and energy from landfill leachate (LL) to biohydrogen and volatile fatty acids (VFAs) using dark fermentation (DF) is a promising technique for developing a sustainable ecosystem. However, poor performance of DF caused by vulnerable fermentative bacteria vitality and strong LL toxicity significantly hinder its commercialization. Herein, an integrated technique linking microalgae photosynthesis and DF was proposed, in which mixed microalgae were applied to robustly reclaim nutrients and chemical oxygen demand (COD) from LL. Then, microalgae biomass was fermented into biohydrogen and VFAs using the DF process. Underlying synergistic mechanisms of the interaction of Scenedesmus obliquus and Chlorella vulgaris resulting from the functioning of extracellular polymeric substances (EPS) were discussed in detail. For better absorption of nutrients from LL, the mixed microalgae secreted obviously more EPS than pure microalgae, which played vital roles in the assimilation of cellular nutrients by forming more negative zeta potential and secreting more tyrosine-/tryptophan-family proteins in EPS. Besides, mixed microalgae produced more intracellular proteins and carbohydrates than the pure microalgae, thereby providing more feedstock for DF and achieving higher energy yield of 10.80 kJ/L than 6.64 kJ/L that was obtained when pure microalgae were used. Moreover, the energy conversion efficiency of 7.75% was higher for mixed microalgae than 4.77% that was obtained for pure microalgae. This work may inspire efficient disposal of LL and production of bioenergy, together with filling the knowledge gaps of synergistic mechanisms of dual microalgal interactions.


Asunto(s)
Chlorella vulgaris , Microalgas , Contaminantes Químicos del Agua , Microalgas/metabolismo , Contaminantes Químicos del Agua/análisis , Ecosistema , Fermentación , Ácidos Grasos Volátiles/metabolismo , Biomasa
11.
Environ Sci Ecotechnol ; 14: 100234, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36685749

RESUMEN

Tetracyclines are refractory pollutants that cause persistent harm to the environment and human health. Therefore, it is urgently necessary to develop methods to promote the efficient degradation and conversion of tetracyclines in wastewater. This report proposes a photobiocatalytic synergistic system involving the coupling of GeO2/Zn-doped phosphotungstic acid hydrate/TiO2 (GeO2/Zn-HPW/TiO2)-loaded photocatalytic optical hollow fibers (POHFs) and an algal-bacterial biofilm. The GeO2/Zn-HPW/TiO2 photocatalyst exhibits a broad absorption edge extending to 1000 nm, as well as high-efficiency photoelectric conversion and electron transfer, which allow the GeO2/Zn-HPW/TiO2-coated POHFs to provide high light intensity to promote biofilm growth. The resulting high photocatalytic activity rapidly and stably reduces the toxicity and increases the biodegradability of tetracycline-containing wastewater. The biofilm enriched with Salinarimonas, Coelastrella sp., and Rhizobium, maintains its activity for the rapid photocatalytic degradation and biotransformation of intermediates to generate the O2 required for photocatalysis. Overall, the synergistic photocatalytic biofilm system developed herein provides an effective and efficient approach for the rapid degradation and conversion of water containing high concentrations of tetracycline.

12.
Environ Sci Ecotechnol ; 14: 100230, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36590875

RESUMEN

Conventional biological treatment usually cannot achieve the same high water quality as advanced treatment when conducted under varied temperatures. Here, satisfactory wastewater treatment efficiency was observed in a microalgae-bacteria consortia (MBC) over a wide temperature range because of the predominance of microalgae. Microalgae contributed more toward wastewater treatment at low temperature because of the unsatisfactory performance of the accompanying bacteria, which experienced cold stress (e.g., bacterial abundance below 3000 sequences) and executed defensive strategies (e.g., enrichment of cold-shock proteins). A low abundance of amoA-C and hao indicated that conventional nitrogen removal was replaced through the involvement of microalgae. Diverse heterotrophic bacteria for nitrogen removal were identified at medium and high temperatures, implying this microbial niche treatment contained diverse flexible consortia with temperature variation. Additionally, pathogenic bacteria were eliminated through microalgal photosynthesis. After fitting the neutral community model and calculating the ecological niche, microalgae achieved a maximum niche breadth of 5.21 and the lowest niche overlap of 0.38, while the accompanying bacterial community in the consortia were shaped through deterministic processes. Finally, the maximum energy yield of 87.4 kJ L-1 and lipid production of 1.9 g L-1 were achieved at medium temperature. Altogether, this study demonstrates that advanced treatment and energy reclamation can be achieved through microalgae-bacteria niche strategies.

13.
Environ Sci Pollut Res Int ; 30(3): 5847-5860, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35984560

RESUMEN

In this work, a magnetic core-shell composite zero-valent iron/copper-polyacrylate (ZVI/Cu-PAA) was synthesized by a simple liquid-phase reduction process and used for hexavalent chromium Cr(VI) removal from wastewater. The optimization experiments show that the optimal dosages of polyacrylate and Cu are 7.00 wt% and 8.25 wt%, respectively. The maximum adsorption capacity and removal rate of Cr(VI) by ZVI/Cu-PAA reached 106.12 mg g-1 and 99.05% at pH 5.5, respectively. Furthermore, the presence of coexisting ions such as Ca2+, Mg2+, Na+, and NO3- had no significant effect on its Cr(VI) removal performance. The excellent performance of ZVI/Cu-PAA is attributed to that the modification of polyacrylate can not only give more active sites but also inhibit agglomeration of nano-metallic particles, while Cu doping promotes the electron generation and transformation of Fe(III)/Fe(II) and Cu(II)/Cu(I) redox cycles. This makes ZVI/Cu-PAA has rich active sites and excellent stability, and has broad application prospects in the remediation of Cr (VI) polluted wastewater. The magnetic core-shell composite ZVI/Cu-PAA has excellent Cr (VI) removal performance because of its rich active sites and high electron transformation efficiency.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Aguas Residuales , Compuestos Férricos , Hierro/química , Cromo/química , Adsorción , Contaminantes Químicos del Agua/análisis
14.
Bioresour Technol ; 363: 127991, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36262000

RESUMEN

Inhomogeneous light distribution and poor CO2 transfer capacity are two critical concerns impeding microalgal photosynthesis in practical suspended photobioreactors (PBRs). To provide valuable guidance on designing high-performance PBRs, recent progress on enhancing light and CO2 availabilities is systematically summarized in this review. Particularly, for the first time, the strategies on elevating light availability are classified and discussed from the perspectives of increasing incident light intensity, introducing internal illumination, optimizing flow field, regulating biomass concentrations, and enlarging illumination surface areas. Meanwhile, the strategies on enhancing CO2 light availability are outlined from the aspects of generating smaller bubbles, extending bubbles residence time, and facilitating CO2 dissolution using extra additives. Given the microalgal biomass production using current PBRs are still suffering from low productivity and economic feasibility, the possible future directions for PBRs implementation and development are presented. Altogether, this review is beneficial to furthering development of PBRs as a practical technology.


Asunto(s)
Microalgas , Fotobiorreactores , Biomasa , Dióxido de Carbono , Fotosíntesis
15.
Carbohydr Polym ; 296: 119872, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36087961

RESUMEN

The effective strategy to solve the problems of low mechanical strength, low adsorption efficiency and poor stability of chitosan is to modify it. In this work, Zr4+ cross-linked chitosan-thiourea (CS-thiourea-Zr) composite was synthesized for the first time and used to remove Cr(VI). CS, ZrO, CN bonds in FTIR spectrum and Zr, S elements in XPS spectrum, SEM-mapping and EDS results verify the successful preparation of CS-thiourea-Zr. The main mechanism of Cr(VI) removal by CS-thiourea-Zr includes electrostatic action, ion exchange, reduction and complexation. The adsorption of Cr(VI) is enhanced by electrostatic adsorption and ion exchange, 80.6 % of the adsorbed Cr(VI) is reduced to Cr(III) by -OH group, and the adsorption of Cr(III) is enhanced by COO- group and CS bond. The maximum adsorption capacity of CS-thiourea-Zr is 246.72 mg g-1 at 298 K and pH = 2.0. CS-thiourea-Zr has excellent acid-base resistance (suitable pH 2-12) and reusability.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Purificación del Agua , Quitosano/química , Cromo , Concentración de Iones de Hidrógeno , Cinética , Tiourea , Agua , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
16.
Bioresour Technol ; 362: 127861, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36041679

RESUMEN

This study proposed a mild chlorination-sulfonation approach to synthesize magnetic carbon acid bearing with catalytic SO3H and adsorption Cl bifunctional sites on polydopamine coating. The catalysts exerted good textural structure and surface chemical properties (i.e., porosity, high specific surface area of >70 m2/g, high catalytic activity with 0.86-1.1 mmol/g of SO3H sites and 0.8%-1.9% of Cl sites, and abundant hydrophilic functional groups), rendering a maximum cellobiose adsorption efficiency of ∼40% within 6 h. Moreover, the catalysts had strong fracture characteristics on different α-/ß-glycosidic bonds with 85.4%-93.9% of disaccharide conversion, while selectively fractionating hemicellulose from wheat straw with 64.3% of xylose yield and 93.4% of cellulose retention. Due to the stable interaction between parent polydopamine support with Fe core and functional groups, the catalysts efficiently recovered by simple magnetic separation had good reusability with minimal losses in catalytic activity.


Asunto(s)
Carbono , Glicósidos , Carbono/química , Catálisis , Polisacáridos
17.
J Hazard Mater ; 440: 129785, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36007366

RESUMEN

As a promising technology, the microalgae-driven strategy can achieve environmentally sustainable and economically viable swine wastewater treatment. Currently, most microalgae-based research focuses on remediation improvement and biomass accumulation, while information on the removal mechanisms and dominant microorganisms is emerging but still limited. In this review, the major removal mechanisms of pollutants and pathogenic bacteria are systematically discussed. In addition, the bacterial and microalgal community during the swine wastewater treatment process are summarized. In general, Blastomonas, Flavobacterium, Skermanella, Calothrix and Sedimentibacter exhibit a high relative abundance. In contrast to the bacterial community, the microalgal community does not change much during swine wastewater treatment. Additionally, the effects of various parameters (characteristics of swine wastewater and cultivation conditions) on microalgal growth and current challenges in the microalgae-driven biotreatment process are comprehensively introduced. This review stresses the need to integrate bacterial and microalgal ecology information into the conventional design of full-scale swine wastewater treatment systems and operations. Herein, future research needs are also proposed, which will facilitate the development and operation of a more efficient microalgae-based swine wastewater treatment process.


Asunto(s)
Contaminantes Ambientales , Microalgas , Microbiota , Animales , Biomasa , Nitrógeno , Nutrientes , Porcinos , Aguas Residuales/microbiología
18.
Chemosphere ; 307(Pt 4): 136117, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35998727

RESUMEN

Antibiotics abuse has triggered a growing environmental problem, posing a major threat to both ecosystem and human health. Unfortunately, there are still several shortcomings to current antibiotics removal technologies. Microalgae-bacteria consortia have been shown to be a promising antibiotics treatment technology owing to advantages of high antibiotics removal efficiency, low operational cost, and carbon emission reduction. This review aims to introduce the removal mechanisms, influencing factors, and future research perspectives for using microalgae-bacteria consortia to remove antibiotics. The interaction mechanisms between microalgae and bacteria are comprehensively revealed, and their exclusive advantages have been summarized in a "Trilogy" strategy, including "reinforced physical contact", "upgraded substance utilization along with antibiotics degradation", and "robust biological regulation". What's more, the relationship between different interaction mechanisms is emphatically analyzed. The important influencing factors, including concentration and classes of antibiotics, environmental conditions, and operational parameters, of antibiotics removal were also assessed. Three innovative treatment systems (microalgae-bacteria fuel cells (MBFCs), microalgae-bacteria membrane photobioreactors (MB-MPBRs), and microalgae-bacteria granular sludge (MBGS)) along with three advanced techniques (metabolic engineering, machine learning, and molecular docking and dynamics) are then introduced. In addition, concrete implementing schemes of the above advanced techniques are also provided. Finally, the current challenges and future research directions in using microalgae-bacteria consortia to remove antibiotics have been summarized. Overall, this review addresses the current state of microalgae-bacteria consortia for antibiotics treatment and provides corresponding recommendations for enhancing antibiotics removal efficiency.


Asunto(s)
Microalgas , Antibacterianos , Bacterias , Biomasa , Carbono , Ecosistema , Humanos , Simulación del Acoplamiento Molecular , Aguas del Alcantarillado , Aguas Residuales/microbiología
19.
Water Res ; 222: 118929, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35970007

RESUMEN

Globally eruptive harmful algal blooms (HABs) have caused numerous negative effects on aquatic ecosystem and human health. Conversion of HABs into biohythane via dark fermentation (DF) is a promising approach to simultaneously cope with environmental and energy issues, but low HABs harvesting efficiency and biohythane productivity severely hinder its application. Here we designed a gradient electro-processing strategy for efficient HABs harvesting and disruption, which had intrinsic advantages of no secondary pollution and high economic feasibility. Firstly, low current density (0.888-4.444 mA/cm2) was supplied to HABs suspension to harvest biomass via electro-flocculation, which achieved 98.59% harvesting efficiency. A mathematic model considering coupling effects of multi-influencing factors on HABs harvesting was constructed to guide large-scale application. Then, the harvested HABs biomass was disrupted via electro-oxidation under higher current density (44.44 mA/cm2) to improve bioavailability for DF. As results, hydrogen and methane yields of 64.46 mL/ (g VS) and 171.82 mL/(g VS) were obtained under 6 min electro-oxidation, along with the highest energy yield (50.1 kJ/L) and energy conversion efficiency (44.87%). Mechanisms of HABs harvesting and disruption under gradient electro-processing were revealed, along with the conversion pathways from HABs to biohythane. Together, this work provides a promising strategy for efficient disposal of HABs with extra benefit of biohythane production.


Asunto(s)
Ecosistema , Floraciones de Algas Nocivas , Biomasa , Floculación , Humanos , Metano
20.
Bioresour Technol ; 361: 127737, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35931283

RESUMEN

Harmful algal blooms (HABs) are growing threats that cause tens of billion dollars economic loss annually. Aiming at efficient disposal of HABs, a cheap and eco-friendly cationic straw was developed by etherification of wheat straw, which replaced hydroxyl groups on cellulose by quaternary ammonium groups. It endowed the cationic straw with high positive charge and achieved 93.92% of harvesting efficiency by enhancing HABs cells aggregation via charge neutralization. Different from inorganic salts-based flocculants, HABs harvesting by the cationic straw is a spontaneous and exothermic process with negative ΔG° and ΔH° under all adsorption conditions. Thermodynamics and kinetics analysis elucidated that HABs adsorption process by cationic straw were mainly driven by physical forces. Together, cationic straw preparation and HABs harvesting processes were comprehensively optimized with orthogonal experiments. The work may inspire cost-effective HABs disposal and fill knowledge gaps of process nature for HABs harvesting.


Asunto(s)
Floraciones de Algas Nocivas , Adsorción , Floculación , Cinética , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...