Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37289614

RESUMEN

In the robotics and rehabilitation engineering fields, surface electromyography (sEMG) signals have been widely studied to estimate muscle activation and utilized as control inputs for robotic devices because of their advantageous noninvasiveness. However, the stochastic property of sEMG results in a low signal-to-noise ratio (SNR) and impedes sEMG from being used as a stable and continuous control input for robotic devices. As a traditional method, time-average filters (e.g., low-pass filters) can improve the SNR of sEMG, but time-average filters suffer from latency problems, making real-time robot control difficult. In this study, we propose a stochastic myoprocessor using a rescaling method extended from a whitening method used in previous studies to enhance the SNR of sEMG without the latency problem that affects traditional time average filter-based myoprocessors. The developed stochastic myoprocessor uses 16 channel electrodes to use the ensemble average, 8 of which are used to measure and decompose deep muscle activation. To validate the performance of the developed myoprocessor, the elbow joint is selected, and the flexion torque is estimated. The experimental results indicate that the estimation results of the developed myoprocessor show an RMS error of 6.17[%], which is an improvement with respect to previous methods. Thus, the rescaling method with multichannel electrodes proposed in this study is promising and can be applied in robotic rehabilitation engineering to generate rapid and accurate control input for robotic devices.


Asunto(s)
Articulación del Codo , Humanos , Electromiografía/métodos , Articulación del Codo/fisiología , Relación Señal-Ruido , Músculo Esquelético/fisiología , Electrodos , Algoritmos
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4130-4133, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018907

RESUMEN

In recent years, high-density surface electromyography (HD-sEMG) has shown promising advantages in many robotics applications. Using HD-sEMG can not only reduce the sensitivity of the sensor position on the muscle belly but can also facilitate the acquisition of more muscle activity information due to spatial sampling. As current commercial HD-EMG systems use stationary amplifiers, leading to bulky measurements and poor portability, the interest in developing an HD-EMG sensor has increased. However, the insufficient electrode density and complicated fabrication process are challenges to overcome. In this paper, we propose a flexible HD-EMG sensor with an on-board amplifier capable of a density level of 0.53 channel/cm2, higher than those in previous works. First, we investigated the effects of different sensor parameters (i.e., the electrode material, the inter-electrode distance (IED) and the size of the electrode) on the measured signal quality. Second, a low-cost, easily fabricated, easily customized HD-EMG fabrication method was proposed based on the selected sensor parameters with a signal-to-noise ratio (SNR) comparable to those of commercial sensors. Finally, we applied a muscle activation estimation algorithm to validate the feasibility of the designed HD-EMG sensor, showing higher estimation accuracy levels. The results here demonstrate that the designed HD-EMG sensor can be used as an effective human-machine interface for robotics applications.


Asunto(s)
Algoritmos , Músculo Esquelético , Amplificadores Electrónicos , Electrodos , Electromiografía , Humanos
3.
IEEE Trans Neural Syst Rehabil Eng ; 28(8): 1781-1789, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32746300

RESUMEN

For active AFO applications, pneumatic remote transmission has advantages in minimizing the mass and complexity of the system due to the flexibility in placing pneumatic components and providing high back-drivability via simple valve control. However, pneumatic systems are generally tethered to large stationary air compressors, which greatly limit the practical daily usage. In this study, we implemented a wearable custom compressor that can be worn at the trunk of the body and can generate up to 1050 kPa of pressurized air to power an unilateral active AFO for dorsiflexion (DF) assistance of drop-foot patients. In order to minimize the size and weight of the custom compressor, the compression rate of the custom compressor was optimized to the rate of consumption required to power the active AFO. The finalized system can provide a maximum assistive torque of 9.8 Nm at a functional frequency of 1 Hz and the average resistive torque during free movement was 0.03 Nm. The system was tested for five hemiplegic drop-foot patients. The proposed system showed an average improvement of 12.3° of ankle peak dorsiflexion angle during the mid to late swing phase.


Asunto(s)
Ortesis del Pié , Movimiento , Articulación del Tobillo , Fenómenos Biomecánicos , Humanos , Aparatos Ortopédicos , Presión , Torque
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...