Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(10): 6573-6581, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36845583

RESUMEN

The effect of steel fibers (0-1.5% by volume) and polypropylene fibers (0-0.5% by volume) on chloride transport in mortars under unsaturated and saturated conditions was investigated using a natural immersion method. Moreover, the micromorphology of the fiber-mortar interface and the pore structure of fiber reinforced mortars were detected using scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP), respectively. The results show that both of the steel fibers and polypropylene fibers have an insignificant effect on the chloride diffusion coefficient of mortars, no matter under unsaturated or saturated conditions. The incorporation of steel fibers has no obvious action on the pore structure of mortars, and the interfacial zone around the steel fibers is not a preferential path for chloride transport. However, the addition of 0.1-0.5% polypropylene fibers refines the pore size of mortars, and yet slightly increases the total porosity. The polypropylene fiber-mortar interface is insignificant, while the agglomerate of polypropylene fibers exists.

2.
Materials (Basel) ; 15(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35454565

RESUMEN

The combined action of chloride and carbonation generally accelerates chloride penetration in concrete. Plenty of studies have revealed a chloride maximum phenomenon in the chloride profiles of concrete under wetting and drying cycles, which affects the accuracy of the service life prediction of concrete structures. Carbonation is probably one of crucial factors inducing chloride maximum phenomena. To investigate the influence of carbonation on chloride distribution of concrete subjected to cyclic wetting-drying conditions, this study established a numerical model coupling carbonation effect, simulated chloride distribution at different carbonation degrees, and verified the simulation results with experimental results. The results show that a chloride peak appears in all predicted chloride profiles when carbonation effect is taken into account, and the higher the carbonation degree is, the more significant the chloride peak is. This demonstrates that carbonation can enhance the forming of chloride maximum phenomenon under cyclic wetting and drying. Moreover, the calculated results are highly consistent with the experimental results under different carbonation conditions, especially in terms of the peak chloride concentration and the corresponding depth. Furthermore, the significance degree of the chloride maximum phenomenon is closely related to some key parameters, such as CO2 concentration, environmental humidity, and temperature.

3.
Materials (Basel) ; 13(4)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059601

RESUMEN

Architectural concrete has been wildly used nowadays, and those served in an offshore environment often suffer from chloride penetration and carbonation. To assess the protection and decoration performances of architectural concrete, this study exposed architectural concrete to actual marine environments and accelerated carbonation conditions. The chloride and carbonation resistance of architectural concrete was determined to evaluate the protection performance, and the corresponding surface-color-consistency was adopted to characterize its decoration performance. The results show that the total and free chloride of concrete in the marine atmosphere zone and the tidal zone generally decreases with depth; chloride content arguments significantly with exposure time, with a chloride maximum peak near the surface. Moreover, the chloride diffusion coefficient is small throughout the measurements, indicating the superior chloride resistance of architectural concrete. Furthermore, architectural concrete also possesses excellent carbonation resistance based on the carbonation depth data obtained from the carbonation experiment. Therefore, architecture concrete served as protection covers can withstand both the chloride attack and carbonation tested in this paper. In addition, carbonation was found to have a profound influence on the aesthetics of architectural concrete. Therefore, carbonation should be carefully handled for better maintaining the aesthetic appearance of architectural concrete in long-term service.

4.
Sci Rep ; 10(1): 1534, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001773

RESUMEN

Altica deserticola (Coleoptera: Chrysomelidae) is a monophagous insect that feeds on, and is thus a harmful pest of, liquorice. Both adults and larvae feed on leaves, causing serious damage to leaf blades. It will even lead to the extinction of liquorice, resulting in significant economic losses. Leaf-disc tests were used to determine the feeding preference of A. deserticola on leaves of Glycyrrhiza uralensis and G. glabra and explore the underlying mechanism of liquorice feeding resistance to A. deserticola by comparing leaf hardness and thickness, cuticle thickness, and nitrogen and tannin content in the two plants. The results showed that larvae and adults have the same feeding preferences, i.e., both preferably fed on G. uralensis, indicating a higher resistance in this species. The hardness, thickness, and the thickness of the stratum corneum of the leaves of G. glabra were significantly greater than those of G. uralensis. Nitrogen content was higher in G. uralensis, while total tannin, tannic acid, and catechin content were higher in G. glabra. The thick cuticle and hard texture of G. glabra leaves may be an important physical trait for effectively resisting A. deserticola feeding, while high tannin and low nitrogen content may also be important.


Asunto(s)
Escarabajos/metabolismo , Conducta Alimentaria/fisiología , Hojas de la Planta/metabolismo , Animales , Dieta , Glycyrrhiza/metabolismo , Glycyrrhiza/parasitología , Glycyrrhiza uralensis/metabolismo , Glycyrrhiza uralensis/parasitología , Hojas de la Planta/química
5.
Materials (Basel) ; 12(24)2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31861189

RESUMEN

To explore the feasibility of utilizing recycled aggregate concrete (RAC) in revetment construction of the lower Yellow River, a series of mix proportions with local recycled aggregates (RA) were designed to evaluate its mechanical properties and durability. The morphology and micro-hardness of the interface transition zone (ITZ) were also characterized to explain the performance of RAC. Based on the compressive strength data of 13 groups of mixtures, which is larger than 30 MPa, and with the RA substitution rate not less than 50%, the RAC containing 50% recycled fine aggregate (RFA) (HDX50), 70% RFA (HDX70), and 50% recycled coarse aggregate (RCA) (HDC50) were selected. The experiment results suggest that the mechanical performance, frost resistance, and carbonation resistance of the selected RAC is generally poorer than that of natural aggregate concrete (NAC), but can meet the performance requirement of concrete for the revetment construction of the lower Yellow River. The comprehensive performance of these three mixtures ranks as: HDX50 > HDX70 > HDC50. When considering the RA substitution ratio as a priority, HDX70 would be the best choice and can be applied in the revetment engineering. A number of defects are observed on the surface of RA with old pastes attached. Furthermore, the ITZs formed around RA are loose and with low micro-hardness, which is deemed to be the dominating reasons leading to the weaker performance of RAC than that of NAC.

6.
J Vis Exp ; (129)2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29286369

RESUMEN

To improve the accuracy of the chloride distribution along the depth of cement paste under cyclic wet-dry conditions, a new method is proposed to obtain a high-precision chloride profile. Firstly, paste specimens are molded, cured, and exposed to cyclic wet-dry conditions. Then, powder samples at different specimen depths are grinded when the exposure age is reached. Finally, the water-soluble chloride content is detected using a silver nitrate titration method, and chloride profiles are plotted. The key to improving the accuracy of the chloride distribution along the depth is to exclude the error in the powderization, which is the most critical step for testing the distribution of chloride. Based on the above concept, the grinding method in this protocol can be used to grind powder samples automatically layer by layer from the surface inward, and it should be noted that a very thin grinding thickness (less than 0.5 mm) with a minimum error less than 0.04 mm can be obtained. The chloride profile obtained by this method better reflects the chloride distribution in specimens, which helps researchers to capture the distribution features that are often overlooked. Furthermore, this method can be applied to studies in the field of cement-based materials, which require high chloride distribution accuracy.


Asunto(s)
Cloruros/química , Materiales de Construcción/análisis , Agua/química , Cloruros/análisis , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...