Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(21): 24919-24928, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35574762

RESUMEN

The photoactivity of nanoporous bismuth vanadate (BiVO4, BVO) photoanodes that were fabricated by a two-step process (electrodeposition and then thermal conversion) in photoelectrochemical (PEC) hydrogen (H2) evolution can be enhanced about 1.44-fold by improving the constitutive ratio of (111̅), (061), and (242̅) crystal facets. The PEC characterization was carried out to investigate the factors altering the performance, which revealed that the crystal facet modulation could improve the photoactivity of the BVO photoanodes. In addition, the orientation-controlled BVO thin-film electrodes are introduced as evidence that the present crystal facet modulation is the positive effect for BVO photoanodes in PEC. The investigation of energy band structures and interfacial charge carrier dynamics of the BVO photoanodes reveals that the crystal facet modulation could result in a shorter lifetime of charge carrier recombination and larger band bending at the interface between BVO and electrolytes. This outcome could improve the charge separation and charge transfer efficiencies of BVO photoanodes, promoting the efficiency of PEC H2 evolution. Moreover, this crystal facet modulation can combine with co-catalyst decoration to further improve the solar-to-hydrogen efficiency of BVO photoanodes in PEC. This study presents a potential strategy to promote the PEC activity by crystal facet modulation and important insights into the interfacial charge transfer properties of semiconductor photoelectrodes for the application in solar fuel generation.

2.
Polymers (Basel) ; 14(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35335506

RESUMEN

Four 1,4-bis((9H-carbazol-9-yl)methyl)benzene-containing polymers (PbCmB, P(bCmB-co-bTP), P(bCmB-co-dbBT), and P(bCmB-co-TF)) were electrosynthesized onto ITO transparent conductive glass and their spectral and electrochromic switching performances were characterized. The PbCmB film displayed four types of color variations (bright gray, dark gray, dark khaki, and dark olive green) from 0.0 to 1.2 V. P(bCmB-co-bTP) displayed a high transmittance variation (∆T = 39.56% at 685 nm) and a satisfactory coloration efficiency (η = 160.5 cm2∙C-1 at 685 nm). Dual-layer organic electrochromic devices (ECDs) were built using four bCmB-containing polycarbazoles and poly(3,4-ethylenedioxythiophene) (PEDOT) as anodes and a cathode, respectively. PbCmB/PEDOT ECD displayed gainsboro, dark gray, and bright slate gray colors at -0.4 V, 1.0 V, and 2.0 V, respectively. The P(bCmB-co-bTP)/PEDOT ECD showed a high ∆T (40.7% at 635 nm) and a high coloration efficiency (η = 428.4 cm2∙C-1 at 635 nm). The polycarbazole/PEDOT ECDs exhibited moderate open circuit memories and electrochemical redox stability. The characterized electrochromic properties depicted that the as-prepared polycarbazoles had a satisfactory application prospect as an electrode for the ECDs.

3.
J Phys Chem Lett ; 12(30): 7194-7200, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34309384

RESUMEN

Red-light-emitting InP/ZnSexS1-x core/shell quantum dots (QDs) were prepared by one-pot synthesis with optimal hydrogen fluoride (HF) treatment. Most of the surficial oxidative species could be removed, and the dangling bonds would be passivated by Zn ions for the InP cores during HF treatment, which would be beneficial to the subsequent ZnSexS1-x shell coating. Three-dimensional time-resolved photoluminescence spectra of the QD samples were analyzed by singular value decomposition global fitting to determine the radiative and nonradiative lifetimes of charge carriers. A proposed model illustrated that the charge carriers in the InP/ZnSexS1-x QDs with interfacial oxidative layer removal would evidently recombine through radiative pathways, mainly from the conduction band to the valence band (lifetime, 33 ns) and partially from the trap states (lifetime, 150 ns). This work offers the important physical insight into the charge carrier dynamics of low-toxicity QDs which have the desired optical properties for optoelectronic applications.

4.
Polymers (Basel) ; 13(7)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918293

RESUMEN

A 1,3-bis(carbazol-9-yl)benzene derivative (BPBC) was synthesized and its related homopolymer (PBPBC) and copolymers (P(BPBC-co-BT), P(BPBC-co-CDT), and P(BPBC-co-CDTK)) were prepared using electrochemical polymerization. Investigations of polymeric spectra showed that PBPBC film was grey, iron-grey, yellowish-grey, and greyish-green from the neutral to the oxidized state. P(BPBC-co-BT), P(BPBC-co-CDT), and P(BPBC-co-CDTK) films showed multicolor transitions from the reduced to the oxidized state. The transmittance change (ΔT) of PBPBC, P(BPBC-co-BT), P(BPBC-co-CDT), and P(BPBC-co-CDTK) films were 29.6% at 1040 nm, 44.4% at 1030 nm, 22.3% at 1050 nm, and 41.4% at 1070 nm. The coloration efficiency (η) of PBPBC and P(BPBC-co-CDTK) films were evaluated to be 140.3 cm2 C-1 at 1040 nm and 283.7 cm2 C-1 at 1070 nm, respectively. A P(BPBC-co-BT)/PEDOT electrochromic device (ECD) showed a large ΔT (36.2% at 625 nm) and a fast response time (less than 0.5 s), whereas a P(BPBC-co-CDTK)/PEDOT ECD revealed a large η (534.4 cm2 C-1 at 610 nm) and sufficient optical circuit memory.

5.
Membranes (Basel) ; 11(2)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572342

RESUMEN

Five carbazole-containing polymeric membranes (PDTC, P(DTC-co-BTP), P(DTC-co-BTP2), P(DTC-co-TF), and P(DTC-co-TF2)) were electrodeposited on transparent conductive electrodes. P(DTC-co-BTP2) shows a high ΔT (68.4%) at 855 nm. The multichromic properties of P(DTC-co-TF2) membrane range between dark yellow, yellowish-green, gunmetal gray, and dark gray in various reduced and oxidized states. Polymer-based organic electrochromic devices are assembled using 2,2'-bithiophene- and 2-(2-thienyl)furan-based copolymers as anodic membranes, and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT-PSS) as the cathodic membrane. P(DTC-co-TF)/PEDOT-PSS electrochromic device (ECD) displays a high transmittance change (ΔT%) (43.4%) at 627 nm as well as a rapid switching time (less than 0.6 s) from a colored to a bleached state. Moreover, P(DTC-co-TF2)/PEDOT-PSS ECD shows satisfactory optical memory (the transmittance change is less than 2.9% in the colored state) and high coloration efficiency (512.6 cm2 C-1) at 627 nm.

6.
J Phys Chem Lett ; 11(6): 2150-2157, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32090570

RESUMEN

Matchstick-like Ag2S-ZnS nanorods (NRs) with a tunable aspect ratio (AR) were synthesized using one-pot thermal decomposition. The ultraviolet photoelectron spectra and time-resolved photoluminescence spectra of the Ag2S-ZnS NRs were collected to study their electronic band structures and charge carrier dynamics. The energy difference (ΔE) at the interface between the ZnS stem and Ag2S tip was altered as the AR of Ag2S-ZnS NRs increased from 11.9 to 18.4, resulting in an enlarged driving force for the delocalized electrons along the conduction band of ZnS being injected into that of Ag2S. The interfacial electron transfer rate constant (ket) from ZnS to Ag2S could be enhanced by ∼2 orders of magnitude from 5.27 × 106 to 3.24 × 108 s-1, leading to a significant improvement in the efficiency of solar hydrogen generation. This investigation provides new physical insights into the manipulation of charge carrier dynamics by means of AR adjustment in semiconductor nanoheterostructures for photoelectric conversions.

7.
Materials (Basel) ; 12(8)2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995740

RESUMEN

A series of carbazole-based polymers (PdCz, P(dCz2-co-dTC1), P(dCz2-co-dTC2), P(dCz1-co-dTC2), and PdTC) were deposited on indium tin oxide (ITO) conductive electrodes using electrochemical polymerization. The as-prepared P(dCz2-co-dTC2) displayed a high ΔT (57.0%) and multichromic behaviors ranging from yellowish green, greenish gray, gray to purplish gray in different redox states. Five organic electrochromic devices (ECDs) were built using dCz- and dTC-containing homopolymers and copolymers as anodic materials, and poly(3,4-(2,2-dimethylpropylenedioxy)thiophene) (PProdot-Me2) as the cathodic material. The P(dCz2-co-dTC2)/PProdot-Me2 ECD presented remarkable electrochromic behaviors from the bleached to colored states. Moreover, P(dCz2-co-dTC2)/PProdot-Me2 ECD displayed a high optical contrast (ΔT, 45.8%), short switching time (ca. 0.3 s), high coloration efficiency (528.8 cm2 C-1) at 580 nm, and high redox cycling stability.

8.
Materials (Basel) ; 11(12)2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30551622

RESUMEN

A series of unique tunable aryl-imidazolium magnetic ionic liquids (MILs) with dual acidity that contain both Brønsted and Lewis acidic sites (abbreviated as B-L MILs) were synthesized and characterized using nuclear magnetic resonance and mass spectrometry. Physical properties, such as thermal properties, magnetic susceptibility, and Brønsted and Lewis acidity, were measured. These properties were found to depend on the cation structure. These B-L MILs had good solubility in many organic solvents, good thermal stability, and low melting points, and exhibited magnet-like behavior. For these B-L MILs, the Brønsted acidity was measured using ultraviolet-visible (UV-Vis), and the Lewis acidity was measured using Fourier transform infrared spectroscopy (FTIR). The results showed that B-L MILs with an electron-withdrawing group in the aryl-imidazolium moiety had higher Brønsted acidity, whereas those with an electron-donating group had higher Lewis acidity. This type of ionic liquid, with both Brønsted and Lewis acidic sites, is expected to be a useful solvent and catalyst for organic reactions.

9.
Materials (Basel) ; 11(10)2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30282954

RESUMEN

Four copolymers (P(tCz (tris(4-carbazoyl-9-ylphenyl)amine)-co-bTP (2,2'-bithiophene)), P(tCz-co-CPDT (4H-cyclopenta[2,1-b:3,4-b']dithiophene)), P(tCz-co-DTC (3,6-di(2-thienyl)carbazole)), and P(tCz-co-CPDTK (cyclopentadithiophene ketone))) are deposited on indium tin oxide (ITO) surfaces using electrochemical polymerization. Spectroelectrochemical properties of copolymer electrodes reveal that the colors of P(tCz-co-bTP) film are pinkish-orange, light olive green, light grayish blue, and dark blue at 0.0, 0.8, 1.2, and 1.6 V, respectively, whereas the color variations of P(tCz-co-CPDTK) film are light yellow, yellow, and blue at 0.0 V, 0.8 V, and 1.5 V, respectively. The ΔT of P(tCz-co-bTP), P(tCz-co-CPDT), P(tCz-co-DTC), and P(tCz-co-CPDTK) films are estimated to be 43.0% at 967 nm, 28.7% at 864 nm, 43.6% at 870 nm, and 24.5% at 984 nm, respectively. Five electrochromic devices (ECDs) are assembled using the tCz-based homopolymer and copolymers as coloring electrodes, and poly(2,2-dimethyl-3,4-propylenedioxythiophene) (PProDOT-Me2) as the complementary electrode. P(tCz-co-DTC)/PProDOT-Me2 ECD reveals high transmittance change (45.9% at 624 nm), P(tCz-co-CPDTK)/PProDOT-Me2 ECD shows high η (513.0 cm² C-1 at 582 nm), and P(tCz-co-bTP)/PProDOT-Me2 ECD presents short switching time (less than 0.4 s) at 628 nm. Moreover, these ECDs show satisfactory redox stability and open circuit stability.

10.
J Nanobiotechnology ; 16(1): 1, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321058

RESUMEN

BACKGROUND: The results showed that the deciding factor is the culture medium in which the bacteria and the graphene oxide (GO) are incubated at the initial manipulation step. These findings allow better use of GO and GO-based materials more and be able to clearly apply them in the field of biomedical nanotechnology. RESULTS: To study the use of GO sheets applied in the field of biomedical nanotechnology, this study determines whether GO-based materials [GO, GO-polyoxyalkyleneamine (POAA), and GO-chitosan] stimulate or inhibit bacterial growth in detail. It is found that it depends on whether the bacteria and GO-based materials are incubated with a nutrient at the initial step. This is a critical factor for the fortune of bacteria. GO stimulates bacterial growth and microbial proliferation for Gram-negative and Gram-positive bacteria and might also provide augmented surface attachment for both types of bacteria. When an external barrier that is composed of GO-based materials forms around the surface of the bacteria, it suppresses nutrients that are essential to microbial growth and simultaneously produces oxidative stress, which causes bacteria to die, regardless of whether they have an outer-membrane-Gram-negative-bacteria or lack an outer-membrane-Gram-positive-bacteria, even for high concentrations of biocompatible GO-POAA. The results also show that these GO-based materials are capable of inducing reactive oxygen species (ROS)-dependent oxidative stress on bacteria. Besides, GO-based materials may act as a biofilm, so it is hypothesized that they suppress the toxicity of low-dose chitosan. CONCLUSION: Graphene oxide is not an antimicrobial material but it is a general growth enhancer that can act as a biofilm to enhance bacterial attachment and proliferation. However, GO-based materials are capable of inducing ROS-dependent oxidative stress on bacteria. The applications of GO-based materials can clearly be used in antimicrobial surface coatings, surface-attached stem cells for orthopedics, antifouling for biocides and microbial fuel cells and microbial electro-synthesis.


Asunto(s)
Antiinfecciosos/farmacología , Bacterias/crecimiento & desarrollo , Grafito/farmacología , Polímeros/farmacología , Bacterias/efectos de los fármacos , Bacterias/ultraestructura , Recuento de Colonia Microbiana , Fluorescencia , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Espectroscopía de Fotoelectrones , Especies Reactivas de Oxígeno , Espectrofotometría Ultravioleta
11.
Polymers (Basel) ; 10(6)2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-30966638

RESUMEN

2,6-Di(9H-carbazol-9-yl)pyridine (DiCP) was synthesized and its corresponding homopolymer (PDiCP) and copolymers (P(DiCP-co-CPDT), P(DiCP-co-CPDT2), P(DiCP-co-CPDTK), and P(DiCP-co-CPDTK2)) were synthesized electrochemically. The anodic copolymer with DiCP:cyclopentadithiophene ketone (CPDTK) = 1:1 feed molar ratio showed high transmittance change (ΔT%) and colouration efficiency (η), which were measured as 39.5% and 184.1 cm² C-1 at 1037 nm, respectively. Electrochromic devices (ECDs) were composed of PDiCP, P(DiCP-co-CPDT), P(DiCP-co-CPDT2), P(DiCP-co-CPDTK), and P(DiCP-co-CPDTK2) as anodically-colouring polymers, and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT-PSS) as cathodically-colouring polymers. P(DiCP-co-CPDTK)/PEDOT-PSS ECD showed light silverish-yellow at 0.0 V, light grey at 0.7 V, grey at 1.3 V, light greyish blue at 1.7 V, and greyish blue at 2.0 V. Moreover, P(DiCP-co-CPDTK)/PEDOT-PSS ECD presented high ΔT (38.2%) and high η (633.8 cm² C-1) at 635 nm.

12.
Nanoscale ; 10(1): 109-117, 2017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-29211084

RESUMEN

Nitrogen-doped graphene quantum dot (N-GQD) nanomaterials conjugated with polyethylenimine (PEI)-polystyrene sulfonate (PSS)-anti-epidermal growth factor receptor (AbEGFR) antibody (N-GQD-PEI-PSS-AbEGFR) demonstrated impressive two-photon properties and stability, signifying that they can serve as an effective two-photon contrast agent in two-photon bioimaging. Furthermore, they provided high intensity, brightness, and signal-to-noise ratios at an ultra-low two-photon excitation (TPE) power level in an observation extending to a deep, three-dimensional depth.


Asunto(s)
Grafito/química , Luminiscencia , Nitrógeno/química , Puntos Cuánticos/química , Materiales Biocompatibles/química , Línea Celular Tumoral , Humanos , Fotones , Polímeros
13.
Polymers (Basel) ; 9(3)2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30970793

RESUMEN

Three dithienylpyrroles (1-(4-(methylthio)phenyl)-2,5-di(thiophen-2-yl)-pyrrole (MPS), 1-(4-methoxyphenyl)-2,5-di(thiophen-2-yl)-pyrrole (MPO), and 4-(2,5-di(thiophen-2-yl)-pyrrol-1-yl)benzonitrile (ANIL)) were synthesized and their corresponding polydithienylpyrroles (PSNS) were electrosynthesized using electrochemical polymerization. Spectroelectrochemical studies indicated that poly(1-(4-(methylthio)phenyl)-2,5-di(thiophen-2-yl)-pyrrole) (PMPS) film was green, dark green, and brown in the neutral, oxidation, and highly oxidized state, respectively. The incorporation of a MPS unit into the PSNS backbone gave rise to a darker color than those of the MPO and ANIL units in the highly oxidized state. The PMPS film showed higher ΔTmax (54.47% at 940 nm) than those of the PMPO (43.87% at 890 nm) and PANIL (44.63% at 950 nm) films in an ionic liquid solution. Electrochromic devices (ECDs) employing PMPS, PMPO, and PANIL as anodic layers and poly(3,4-(2,2-diethypropylenedioxy)thiophene)(PProDOT-Et2) as a cathodic layer were constructed. PMPO/PProDOT-Et2 ECD showed the highest ΔTmax (41.13%) and coloration efficiency (674.67 cm²·C-¹) at 626 nm, whereas PMPS/PProDOT-Et2 ECD displayed satisfactory ΔTmax (32.51%) and coloration efficiency (637.25 cm²·C-¹) at 590 nm. Repeated cyclic voltammograms of PMPS/PProDOT-Et2, PMPO/PProDOT-Et2, and PANIL/PProDOT-Et2 ECDs indicated that ECDs had satisfactory redox stability.

14.
ACS Appl Mater Interfaces ; 7(31): 17318-29, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26172073

RESUMEN

The photostability, photodestructive efficacy, two-photon excitation cross section, and two-photon fluorescence of gold nanoparticles conjugated with a hydrophilic photosensitizer, indocyanine green, via multiphoton laser exhibited an increased size effect in methicillin-resistant Staphylococcus aureus and A549 cancer cells that was dependent on the size of multifunctional gold nanomaterials, but the effect only occurred when nanomaterials within 100 nm in diameter were used. Besides, the enhanced effectiveness of photodestruction, photostability, and contrast probe indicated an additive effect in the therapeutic and imaging efficiency of multifunctional gold nanomaterials. Consequently, the preparation of the multifunctional gold nanomaterials and their use in biomedical applications via multiphoton laser is an alternative and potential therapeutic approach for killing bacteria and for ablating cancer cells.


Asunto(s)
Oro/química , Rayos Láser , Nanopartículas del Metal/química , Fármacos Fotosensibilizantes/química , Anticuerpos/química , Anticuerpos/inmunología , Anticuerpos/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Verde de Indocianina/química , Verde de Indocianina/toxicidad , Nanopartículas del Metal/toxicidad , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de la radiación , Microscopía de Fluorescencia por Excitación Multifotónica , Tamaño de la Partícula , Fotones , Fármacos Fotosensibilizantes/toxicidad , Especies Reactivas de Oxígeno/metabolismo
15.
Nanomedicine ; 10(4): 819-29, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24333595

RESUMEN

Magnetic manganese ferrite (MnFe2O4) nanoparticles with approximately 100nm in diameter were used to improve the performance of an immunoassay for detecting influenza infections. The synthesized nanoparticles were tested for long-term storage to confirm the stability of their thermal decomposition process. Then, an integrated microfluidic system was developed to perform the diagnosis process automatically, including virus purification and detection. To apply these nanoparticles for influenza diagnosis, a micromixer was optimized to reduce the dead volume within the microfluidic chip. Furthermore, the mixing index of the micromixer could achieve as high as 97% in 2seconds. The optical signals showed that this nanoparticle-based immunoassay with dynamic mixing could successfully achieve a detection limit of influenza as low as 0.007 HAU. When compared with the 4.5-µm magnetic beads, the optical signals of the MnFe2O4 nanoparticles were twice as sensitive. Furthermore, five clinical specimens were tested to verify the usability of the developed system. FROM THE CLINICAL EDITOR: In this study, magnetic manganese ferrite nanoparticles were used to improve the performance of a novel immunoassay for the rapid and efficient detection of influenza infections.


Asunto(s)
Óxido Ferrosoférrico/química , Gripe Humana/diagnóstico , Técnicas Analíticas Microfluídicas/métodos , Nanopartículas/química , Orthomyxoviridae/inmunología , Animales , Perros , Humanos , Inmunoensayo/métodos , Células de Riñón Canino Madin Darby , Técnicas Analíticas Microfluídicas/instrumentación , Orthomyxoviridae/química , Sensibilidad y Especificidad
16.
Biomaterials ; 34(22): 5677-88, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23639532

RESUMEN

We synthesize a NIR MHI-148 dye, a lipophilic heptamethine cyanine, with capability in tumor-targeting property to accumulate in the mitochondria of tumor. In the context of MHI-148 dye, we demonstrate effective tumor targeting and NIR fluorescence in vitro and in vivo for MHI-148 as compared to ICG. A series of porous Gd silicates related nanoparticles, i.e. Gd silicate, Gd silicate@mSiO(2) (mSiO(2): mesoporous silica shell), and Gd(3+)-chelated Gd silicate@mSiO(2) (Gd(3+)-DOTA chelated on the mSiO(2)) are fabricated to demonstrate their magnetic resonance (MR) contrast imaging effects. Those Gd silicates related nanoparticles exhibit dual MR effect, expressing T(1)-brightened and T(2)-darkened effects, in lower magnetic field. In high magnetic field, an abnormal enhanced transverse relaxivity (r(2)) appears, showing an effective T(2)-lowering effect, possibly due to concentrated Gd amount and porous architecture. The r(2) value increases 4-5 times as the field strength increased from 3T to 7T. The Gd(3+)-chelated Gd silicate@mSiO(2) has given large r(2) (T(2)-lowering effect) up to 343.8 s(-1) mM(-1), which is even larger than the reported magnetic Fe(3)O(4) nanoparticles measured at the same field. Using a 9.4T animal micro MRI system we have seen effectively darken in signal for those porous Gd silicates related NPs, while no such phenomenon appears in commercial Gd-DOTA agent. The MHI-148 is then conjugated on the porous Gd silicate@mSiO(2) nanoparticles for a new paradigm with three functionalities for in vivo tumor targeting, near-infrared fluorescent and MR imaging by means of only using MHI-148 dye.


Asunto(s)
Carbocianinas , Gadolinio , Imagen por Resonancia Magnética/métodos , Nanopartículas , Neoplasias/metabolismo , Silicatos , Espectroscopía Infrarroja Corta , Animales , Carbocianinas/síntesis química , Carbocianinas/química , Línea Celular Tumoral , Endocitosis , Fibroblastos/citología , Fibroblastos/metabolismo , Fluorescencia , Compuestos Heterocíclicos , Humanos , Verde de Indocianina , Lípidos/química , Ratones , Ratones SCID , Nanopartículas/ultraestructura , Especificidad de Órganos , Compuestos Organometálicos , Porosidad , Propilaminas , Silanos/química , Factores de Tiempo
17.
J Air Waste Manag Assoc ; 55(7): 1031-41, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16111144

RESUMEN

Visibility data collected from Kaohsiung City, Taiwan, for the past two decades indicated that the air pollutants have significantly degraded visibility in recent years. During our study period, the seasonal mean visibilities in spring, summer, fall, and winter were only 5.4, 9.1, 8.2, and 3.4 km, respectively. To ascertain how urban aerosols influence the visibility, we conducted concurrent visibility monitoring and aerosol sampling in 1999 to identify the principal causes of visibility impairments in the region. In this study, ambient aerosols were sampled and analyzed for 11 constituents, including water-soluble ions and carbon materials, to investigate the chemical composition of Kaohsiung aerosols. Stepwise regression method was used to correlate the impact of aerosol species on visibility impairments. Both seasonal and diurnal variation patterns were found from the monitoring of visibility. Our results showed that light scattering was attributed primarily to aerosols with sizes that range from 0.26 to 0.90 pm, corresponding with the wavelength region of visible light, which accounted for approximately 72% of the light scattering coefficient. Sulfate was a dominant component that affected both the light scattering coefficient and the visibility in the region. On average, (NH4)2SO4, NH4NO3, total carbon, and fine particulate matter (PM2.5)-remainder contributed 53%, 17%, 16%, and 14% to total light scattering, respectively. An empirical regression model of visibility based on sulfate, elemental carbon, and humidity was developed, and the comparison indicated that visibility in an urban area could be properly simulated by the equation derived herein.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Atmósfera , Ciudades , Compuestos Orgánicos/análisis , Solubilidad , Taiwán
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...