Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gene Ther ; 31(5-6): 263-272, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38321198

RESUMEN

Patients with sialidosis (mucolipidosis type I) type I typically present with myoclonus, seizures, ataxia, cherry-red spots, and blindness because of mutations in the neuraminidase 1 (NEU1) gene. Currently, there is no treatment for sialidosis. In this study, we developed an adeno-associated virus (AAV)-mediated gene therapy for a Neu1 knockout (Neu1-/-) mouse model of sialidosis. The vector, AAV9-P3-NP, included the human NEU1 promoter, NEU1 cDNA, IRES, and CTSA cDNA. Untreated Neu1-/- mice showed astrogliosis and microglial LAMP1 accumulation in the nervous system, including brain, spinal cord, and dorsal root ganglion, together with impaired motor function. Coexpression of NEU1 and protective protein/cathepsin A (PPCA) in neonatal Neu1-/- mice by intracerebroventricular injection, and less effective by facial vein injection, decreased astrogliosis and LAMP1 accumulation in the nervous system and improved rotarod performance of the treated mice. Facial vein injection also improved the grip strength and survival of Neu1-/- mice. Therefore, cerebrospinal fluid delivery of AAV9-P3-NP, which corrects the neurological deficits of mice with sialidosis, could be a suitable treatment for patients with sialidosis type I. After intracerebroventricular or facial vein injection of AAV vectors, NEU1 and PPCA are expressed together. PPCA-protected NEU1 is then sent to lysosomes, where ß-Gal binds to this complex to form a multienzyme complex in order to execute its function.


Asunto(s)
Dependovirus , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos , Ratones Noqueados , Mucolipidosis , Neuraminidasa , Animales , Terapia Genética/métodos , Neuraminidasa/genética , Neuraminidasa/metabolismo , Ratones , Dependovirus/genética , Mucolipidosis/terapia , Mucolipidosis/genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Catepsina A/genética , Catepsina A/metabolismo , Humanos , Encéfalo/metabolismo
2.
Front Genet ; 12: 606970, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234805

RESUMEN

Oligohydramnios is not a rare prenatal finding. However, recurrent oligohydramnios is uncommon, and genetic etiology should be taken into consideration. We present two families with recurrent fetal oligohydramnios that did not respond to amnioinfusion. Rapid trio-whole-exome sequencing (WES) revealed mutations in the AGT gene in both families within 1 week. The first family had a compound heterozygous mutation with c.856 + 1G > T and c.857-619_1269 + 243delinsTTGCCTTGC changes. The second family had homozygous c.857-619_1269 + 243delinsTTGCCTTGC mutations. AGT gene mutation may lead to autosomal recessive renal tubular dysgenesis, a rare and lethal disorder that can result in early neonatal death. Both the alleles identified are known alleles associated with pathogenicity. Our findings suggest that trio-WES analysis may help rapidly identify causative etiologies that can inform prompt counseling and decision-making prenatally.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...