Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2524: 433-456, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35821491

RESUMEN

We recently expanded the commonly used dual luciferase assaying method toward multiplex hextuple luciferase assaying, allowing monitoring the activity of five experimental pathways against one control at the same time. In doing so, while our expanded assay utilizes a total of six orthogonal luciferases instead of two, this assay, conveniently, still utilizes the well-established reagents and principles of the widely used dual luciferase assay. Three quenchable D-luciferin-consuming luciferases are measured after addition of D-Luciferin substrate, followed by quenching of their bioluminescence (BL) and the measurement of three coelenterazine (CTZ)-consuming luciferases after addition of CTZ substrate, all in the same vessel. Here, we provide detailed protocols on how to perform such multiplex hextuple luciferase assaying to monitor cellular signal processing upstream of five transcription factors and their corresponding transcription factor-binding motifs, using a constitutive promoter as normalization control. The first protocol is provided on how to perform cell culture in preparation toward genetic or pharmaceutical perturbations, as well as transfecting a multiplex hextuple luciferase reporter vector encoding all luciferase reporter units needed for multiplex hextuple luciferase assaying. The second protocol details on how to execute multiplex hextuple luciferase assaying using a microplate reader appropriately equipped to detect the different BLs emitted by all six luciferases. Finally, the third protocol provides details on analyzing, plotting, and interpreting the data obtained by the microplate reader.


Asunto(s)
Bioensayo , Factores de Transcripción/genética , Luciferasas/genética , Regiones Promotoras Genéticas , Unión Proteica
2.
Proc Natl Acad Sci U S A ; 119(13): e2023784119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35333654

RESUMEN

Neural stem cells, the source of newborn neurons in the adult hippocampus, are intimately involved in learning and memory, mood, and stress response. Despite considerable progress in understanding the biology of neural stem cells and neurogenesis, regulating the neural stem cell population precisely has remained elusive because we have lacked the specific targets to stimulate their proliferation and neurogenesis. The orphan nuclear receptor TLX/NR2E1 governs neural stem and progenitor cell self-renewal and proliferation, but the precise mechanism by which it accomplishes this is not well understood because its endogenous ligand is not known. Here, we identify oleic acid (18:1ω9 monounsaturated fatty acid) as such a ligand. We first show that oleic acid is critical for neural stem cell survival. Next, we demonstrate that it binds to TLX to convert it from a transcriptional repressor to a transcriptional activator of cell-cycle and neurogenesis genes, which in turn increases neural stem cell mitotic activity and drives hippocampal neurogenesis in mice. Interestingly, oleic acid-activated TLX strongly up-regulates cell cycle genes while only modestly up-regulating neurogenic genes. We propose a model in which sufficient quantities of this endogenous ligand must bind to TLX to trigger the switch to proliferation and drive the progeny toward neuronal lineage. Oleic acid thus serves as a metabolic regulator of TLX activity that can be used to selectively target neural stem cells, paving the way for future therapeutic manipulations to counteract pathogenic impairments of neurogenesis.


Asunto(s)
Hipocampo , Neurogénesis , Ácido Oléico , Receptores Citoplasmáticos y Nucleares , Animales , Proliferación Celular , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Ligandos , Ratones , Neurogénesis/fisiología , Ácido Oléico/metabolismo , Receptores Nucleares Huérfanos , Receptores Citoplasmáticos y Nucleares/metabolismo
3.
Sci Rep ; 11(1): 1121, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441849

RESUMEN

Despite the established roles of the epigenetic factor UHRF1 in oncogenesis, no UHRF1-targeting therapeutics have been reported to date. In this study, we use fragment-based ligand discovery to identify novel scaffolds for targeting the isolated UHRF1 tandem Tudor domain (TTD), which recognizes the heterochromatin-associated histone mark H3K9me3 and supports intramolecular contacts with other regions of UHRF1. Using both binding-based and function-based screens of a ~ 2300-fragment library in parallel, we identified 2,4-lutidine as a hit for follow-up NMR and X-ray crystallography studies. Unlike previous reported ligands, 2,4-lutidine binds to two binding pockets that are in close proximity on TTD and so has the potential to be evolved into more potent inhibitors using a fragment-linking strategy. Our study provides a useful starting point for developing potent chemical probes against UHRF1.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/química , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Descubrimiento de Drogas , Piridinas/química , Piridinas/metabolismo , Bibliotecas de Moléculas Pequeñas , Dominio Tudor , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Código de Histonas , Histonas/metabolismo , Ligandos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Fragmentos de Péptidos/metabolismo , Unión Proteica , Piridinas/farmacocinética , Relación Estructura-Actividad
5.
Curr Protoc Mol Biol ; 131(1): e122, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32539239

RESUMEN

Multiplex experimentation that can assay multiple cellular signaling pathways in the same cells requires orthogonal genetically encoded reporters that report over large dynamic ranges. Luciferases are cost-effective, versatile candidates whose output signals can be sensitively detected in a multiplex fashion. Commonly used dual luciferase reporter assays detect one luciferase that is coupled to a single cellular pathway and a second that is coupled to a control pathway for normalization purposes. We have expanded this approach to multiplex hextuple luciferase assays that can report on five cellular signaling pathways and one control, each of which is encoded by a unique luciferase. Light emission by the six luciferases can be distinguished by the use of two distinct substrates, each specific for three luciferases, followed by spectral decomposition of the light emitted by each of the three luciferase enzymes with bandpass filters. Here, we present detailed protocols on how to perform multiplex hextuple luciferase assaying to monitor pathway fluxes through transcriptional response elements for five specific signaling pathways (i.e., c-Myc, NF-κß, TGF-ß, p53, and MAPK/JNK) using the constitutive CMV promoter as normalization control. Protocols are provided for preparing reporter vector plasmids for multiplex reporter assaying, performing cell culture and multiplex luciferase reporter vector plasmid transfection, executing multiplex luciferase assays, and analyzing and interpreting data obtained by a plate reader appropriately equipped to detect the different luminescences. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Preparation of vectors for multiplex hextuple luciferase assaying Basic Protocol 2: Cell culture work for multiplex hextuple luciferase assays Basic Protocol 3: Transfection of luciferase reporter plasmids followed by drug and recombinant protein treatments Basic Protocol 4: Performing the multiplex hextuple luciferase assay.


Asunto(s)
Escherichia coli/genética , Luciferasas/genética , Transducción de Señal/genética , Células A549 , Genes Reporteros , Vectores Genéticos , Humanos , Luciferasas/metabolismo , Plásmidos/genética , Regiones Promotoras Genéticas , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Transfección
6.
Nat Commun ; 10(1): 5710, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31836712

RESUMEN

Sensitive simultaneous assessment of multiple signaling pathways within the same cells requires orthogonal reporters that can assay over large dynamic ranges. Luciferases are such genetically encoded candidates due to their sensitivity, versatility, and cost-effectiveness. We expand luciferase multiplexing in post-lysis endpoint luciferase assays from two to six. Light emissions are distinguished by a combination of distinct substrates and emission spectra deconvolution. All six luciferase reporter units are stitched together into one plasmid facilitating delivery of all reporter units through a process we termed solotransfection, minimizing experimental errors. We engineer a multiplex hextuple luciferase assay to probe pathway fluxes through five transcriptional response elements against a control constitutive promoter. We can monitor effects of siRNA, ligand, and chemical compound treatments on their target pathways along with the four other probed cellular pathways. We demonstrate the effectiveness and adaptiveness of multiplex luciferase assaying, and its broad application across different research fields.


Asunto(s)
Bioensayo/métodos , Luciferasas/genética , Mediciones Luminiscentes/métodos , Línea Celular Tumoral , Genes Reporteros/genética , Humanos , Ligandos , Luciferasas/química , Plásmidos/genética , Regiones Promotoras Genéticas/genética , Ingeniería de Proteínas , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
7.
J Biol Chem ; 290(21): 13115-27, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25864199

RESUMEN

The constitutively expressed heat shock protein 70 kDa (Hsc70) is a major chaperone protein responsible for maintaining proteostasis, yet how its structure translates into functional decisions regarding client fate is still unclear. We previously showed that Hsc70 preserved aberrant Tau, but it remained unknown if selective inhibition of the activity of this Hsp70 isoform could facilitate Tau clearance. Using single point mutations in the nucleotide binding domain, we assessed the effect of several mutations on the functions of human Hsc70. Biochemical characterization revealed that one mutation abolished both Hsc70 ATPase and refolding activities. This variant resembled the ADP-bound conformer at all times yet remained able to interact with cofactors, nucleotides, and substrates appropriately, resembling a dominant negative Hsc70 (DN-Hsc70). We then assessed the effects of this DN-Hsc70 on its client Tau. DN-Hsc70 potently facilitated Tau clearance via the proteasome in cells and brain tissue, in contrast to wild type Hsc70 that stabilized Tau. Thus, DN-Hsc70 mimics the action of small molecule pan Hsp70 inhibitors with regard to Tau metabolism. This shift in Hsc70 function by a single point mutation was the result of a change in the chaperome associated with Hsc70 such that DN-Hsc70 associated more with Hsp90 and DnaJ proteins, whereas wild type Hsc70 was more associated with other Hsp70 isoforms. Thus, isoform-selective targeting of Hsc70 could be a viable therapeutic strategy for tauopathies and possibly lead to new insights in chaperone complex biology.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas del Choque Térmico HSC70/antagonistas & inhibidores , Proteínas del Choque Térmico HSC70/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Proteínas tau/metabolismo , Western Blotting , Células Cultivadas , Citosol/metabolismo , Polarización de Fluorescencia , Técnica del Anticuerpo Fluorescente , Proteínas del Choque Térmico HSC70/genética , Humanos , Espectroscopía de Resonancia Magnética , Mutación/genética , Unión Proteica , Conformación Proteica , Isoformas de Proteínas , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Proteínas tau/genética
8.
PLoS Comput Biol ; 9(11): e1003279, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24277995

RESUMEN

DnaK is a molecular chaperone that has important roles in protein folding. The hydrolysis of ATP is essential to this activity, and the effects of nucleotides on the structure and function of DnaK have been extensively studied. However, the key residues that govern the conformational motions that define the apo, ATP-bound, and ADP-bound states are not entirely clear. Here, we used molecular dynamics simulations, mutagenesis, and enzymatic assays to explore the molecular basis of this process. Simulations of DnaK's nucleotide-binding domain (NBD) in the apo, ATP-bound, and ADP/Pi-bound states suggested that each state has a distinct conformation, consistent with available biochemical and structural information. The simulations further suggested that large shearing motions between subdomains I-A and II-A dominated the conversion between these conformations. We found that several evolutionally conserved residues, especially G228 and G229, appeared to function as a hinge for these motions, because they predominantly populated two distinct states depending on whether ATP or ADP/Pi was bound. Consistent with the importance of these "hinge" residues, alanine point mutations caused DnaK to have reduced chaperone activities in vitro and in vivo. Together, these results clarify how sub-domain motions communicate allostery in DnaK.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Nucleótidos/metabolismo , Regulación Alostérica/genética , Sitios de Unión , Proteínas de Escherichia coli/genética , Proteínas HSP70 de Choque Térmico/genética , Simulación de Dinámica Molecular , Nucleótidos/química , Mutación Puntual/genética , Estructura Terciaria de Proteína
9.
Mol Biosyst ; 8(9): 2323-33, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22732719

RESUMEN

In Escherichia coli, the molecular chaperones DnaK and DnaJ cooperate to assist the folding of newly synthesized or unfolded polypeptides. DnaK and DnaJ bind to hydrophobic motifs in these proteins and they also bind to each other. Together, this system is thought to be sufficiently versatile to act on the entire proteome, which creates interesting challenges in understanding the interactions between DnaK, DnaJ and their thousands of potential substrates. To address this question, we computationally predicted the number and frequency of DnaK- and DnaJ-binding motifs in the E. coli proteome, guided by free energy-based binding consensus motifs. This analysis revealed that nearly every protein is predicted to contain multiple DnaK- and DnaJ-binding sites, with the DnaJ sites occurring approximately twice as often. Further, we found that an overwhelming majority of the DnaK sites partially or completely overlapped with the DnaJ-binding motifs. It is well known that high concentrations of DnaJ inhibit DnaK-DnaJ-mediated refolding. The observed overlapping binding sites suggest that this phenomenon may be explained by an important balance in the relative stoichiometry of DnaK and DnaJ. To test this idea, we measured the chaperone-assisted folding of two denatured substrates and found that the distribution of predicted DnaK- and DnaJ-binding sites was indeed a good predictor of the optimal stoichiometry required for folding. These studies provide insight into how DnaK and DnaJ might cooperate to maintain global protein homeostasis.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteoma/metabolismo , Sitios de Unión , Proteínas de Escherichia coli/genética , Unión Proteica
10.
Chem Biol ; 18(2): 210-21, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21338918

RESUMEN

DnaK is a molecular chaperone responsible for multiple aspects of bacterial proteostasis. The intrinsically slow ATPase activity of DnaK is stimulated by its co-chaperone, DnaJ, and these proteins often work in concert. To identify inhibitors we screened plant-derived extracts against a reconstituted mixture of DnaK and DnaJ. This approach resulted in the identification of flavonoids, including myricetin, which inhibited activity by up to 75%. Interestingly, myricetin prevented DnaJ-mediated stimulation of ATPase activity, with minimal impact on either DnaK's intrinsic turnover rate or its stimulation by another co-chaperone, GrpE. Using NMR, we found that myricetin binds DnaK at an unanticipated site between the IB and IIB subdomains and that it allosterically blocked binding of DnaK to DnaJ. Together, these results highlight a "gray box" screening approach, which might facilitate the identification of inhibitors of other protein-protein interactions.


Asunto(s)
Proteínas de Escherichia coli/antagonistas & inhibidores , Flavonoides/farmacología , Proteínas del Choque Térmico HSP40/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Regulación Alostérica/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Modelos Moleculares , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Estructura Terciaria de Proteína , Relación Estructura-Actividad
11.
Anal Biochem ; 410(2): 310-2, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21078286

RESUMEN

The BCA assay is a colorimetric method for estimating protein concentration. In 96-well plates, the relationship between protein content and absorbance is nearly linear over a wide range; however, performance is reduced in lower volume. To overcome this limitation, we performed the BCA assays in opaque, white 384-well plates. These plates emit fluorescence between 450-600 nm when excited at 430 nm; thus, their fluorescence is quenched by the BCA chromophore (λ(max) 562 nm). This arrangement allowed accurate determination of protein content using only 2 µL of sample. Moreover, soluble flourescein could replace the white plates, creating a homogenous format.


Asunto(s)
Colorimetría/métodos , Proteínas/análisis , Quinolinas/química , Colorantes/química , Modelos Lineales , Sensibilidad y Especificidad
12.
J Biomol Screen ; 15(10): 1211-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20926844

RESUMEN

Members of the heat shock protein 70 (Hsp70) family of molecular chaperones are emerging as potential therapeutic targets. Their ATPase activity has classically been measured using colorimetric phosphate detection reagents, such as quinaldine red (QR). Although such assays are suitable for 96-well plate formats, they typically lose sensitivity when attempted in lower volume due to path length and meniscus effects. These limitations and Hsp70's weak enzymatic activity have combined to create significant challenges in high-throughput screening. To overcome these difficulties, the authors have adopted an energy transfer strategy that was originally reported by Zuck et al. (Anal Biochem 2005;342:254-259). Briefly, white 384-well plates emit fluorescence when irradiated at 430 nm. In turn, this intrinsic fluorescence can be quenched by energy transfer with the QR-based chromophore. Using this more sensitive approach, the authors tested 55,400 compounds against DnaK, a prokaryotic member of the Hsp70 family. The assay performance was good (Z' ~0.6, coefficient of variation ~8%), and at least one promising new inhibitor was identified. In secondary assays, this compound specifically blocked stimulation of DnaK by its co-chaperone, DnaJ. Thus, this simple and inexpensive adaptation of a colorimetric method might be suitable for screening against Hsp70 family members.


Asunto(s)
Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Adenosina Trifosfatasas/metabolismo , Descubrimiento de Drogas , Transferencia Resonante de Energía de Fluorescencia , Proteínas del Choque Térmico HSP40/antagonistas & inhibidores , Proteínas del Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/metabolismo , Bibliotecas de Moléculas Pequeñas
13.
ACS Chem Biol ; 5(6): 611-22, 2010 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-20481474

RESUMEN

Heat shock protein 70 (Hsp70) is a highly conserved molecular chaperone that plays multiple roles in protein homeostasis. In these various tasks, the activity of Hsp70 is shaped by interactions with co-chaperones, such as Hsp40. The Hsp40 family of co-chaperones binds to Hsp70 through a conserved J-domain, and these factors stimulate ATPase and protein-folding activity. Using chemical screens, we identified a compound, 115-7c, which acts as an artificial co-chaperone for Hsp70. Specifically, the activities of 115-7c mirrored those of a Hsp40; the compound stimulated the ATPase and protein-folding activities of a prokaryotic Hsp70 (DnaK) and partially compensated for a Hsp40 loss-of-function mutation in yeast. Consistent with these observations, NMR and mutagenesis studies indicate that the binding site for 115-7c is adjacent to a region on DnaK that is required for J-domain-mediated stimulation. Interestingly, we found that 115-7c and the Hsp40 do not compete for binding but act in concert. Using this information, we introduced additional steric bulk to 115-7c and converted it into an inhibitor. Thus, these chemical probes either promote or inhibit chaperone functions by regulating Hsp70-Hsp40 complex assembly at a native protein-protein interface. This unexpected mechanism may provide new avenues for exploring how chaperones and co-chaperones cooperate to shape protein homeostasis.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequeñas/química
14.
J Biol Chem ; 285(28): 21282-91, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20439464

RESUMEN

The Escherichia coli 70-kDa heat shock protein, DnaK, is a molecular chaperone that engages in a variety of cellular activities, including the folding of proteins. During this process, DnaK binds its substrates in coordination with a catalytic ATPase cycle. Both the ATPase and protein folding activities of DnaK are stimulated by its co-chaperones, DnaJ and GrpE. However, it is not yet clear how changes in the stimulated ATPase rate of DnaK impact the folding process. In this study, we performed mutagenesis throughout the nucleotide-binding domain of DnaK to generate a collection of mutants in which the stimulated ATPase rates varied from 0.7 to 13.6 pmol/microg/min(-1). We found that this range was largely established by differences in the ability of the mutants to be stimulated by one or both of the co-chaperones. Next, we explored how changes in ATPase rate might impact refolding of denatured luciferase in vitro and found that the two activities were poorly correlated. Unexpectedly, we found several mutants that refold luciferase normally in the absence of significant ATP turnover, presumably by increasing the flexibility of DnaK. Finally, we tested whether DnaK mutants could complement growth of DeltadnaK E. coli cells under heat shock and found that the ability to refold luciferase was more predictive of in vivo activity than ATPase rate. This study provides insights into how flexibility and co-chaperone interactions affect DnaK-mediated ATP turnover and protein folding.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Dicroismo Circular , Relación Dosis-Respuesta a Droga , Cinética , Modelos Biológicos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Mutagénesis , Mutagénesis Sitio-Dirigida , Mutación , Desnaturalización Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína
16.
J Biol Chem ; 285(4): 2498-505, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-19889640

RESUMEN

Members of the 70-kDa heat shock family can control and manipulate a host of oncogenic client proteins. This role of Hsp70 in both the folding and degradation of these client proteins makes it a potential drug target for certain forms of cancer. The phenothiazine family of compounds, as well as the flavonoid myricetin, was recently shown to inhibit Hsp70-ATPase activity, whereas members of the dihydropyrimidine family stimulated ATPase function. Akt, a major survival kinase, was found to be under the regulation of Hsp70, and when the ATPase activity of Hsp70 was increased or decreased by these compounds, Akt levels were also increased or decreased. Also, increasing Hsp70 levels concurrent with inhibition of its ATPase function synergistically reduced Akt levels to a greater extent than either manipulation alone, providing new insights about client fate decisions. Akt reductions mediated by Hsp70 inhibitors were prevented when Hsp70 expression was silenced with small interfering RNA. Inhibiting Hsp70 ATPase function produced cytotoxic events only in breast cancer cell lines where Akt dysfunction was previously shown, suggesting therapeutic specificity depending on the Hsp70 client profile. Thus, increasing Hsp70 levels combined with inhibiting its ATPase function may serve to dramatically reduce Akt levels and facilitate cell death in certain types of cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Muerte Celular/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Femenino , Proteínas del Choque Térmico HSC70/genética , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/genética , Humanos , Fenotiazinas/farmacología , ARN Interferente Pequeño , Transfección
17.
J Neurosci ; 29(39): 12079-88, 2009 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-19793966

RESUMEN

Alzheimer's disease and other tauopathies have recently been clustered with a group of nervous system disorders termed protein misfolding diseases. The common element established between these disorders is their requirement for processing by the chaperone complex. It is now clear that the individual components of the chaperone system, such as Hsp70 and Hsp90, exist in an intricate signaling network that exerts pleiotropic effects on a host of substrates. Therefore, we have endeavored to identify new compounds that can specifically regulate individual components of the chaperone family. Here, we hypothesized that chemical manipulation of Hsp70 ATPase activity, a target that has not previously been pursued, could illuminate a new pathway toward chaperone-based therapies. Using a newly developed high-throughput screening system, we identified inhibitors and activators of Hsp70 enzymatic activity. Inhibitors led to rapid proteasome-dependent tau degradation in a cell-based model. Conversely, Hsp70 activators preserved tau levels in the same system. Hsp70 inhibition did not result in general protein degradation, nor did it induce a heat shock response. We also found that inhibiting Hsp70 ATPase activity after increasing its expression levels facilitated tau degradation at lower doses, suggesting that we can combine genetic and pharmacologic manipulation of Hsp70 to control the fate of bound substrates. Disease relevance of this strategy was further established when tau levels were rapidly and substantially reduced in brain tissue from tau transgenic mice. These findings reveal an entirely novel path toward therapeutic intervention of tauopathies by inhibition of the previously untargeted ATPase activity of Hsp70.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/fisiología , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/fisiología , Proteínas tau/fisiología , Adenosina Trifosfatasas/antagonistas & inhibidores , Animales , Colorantes Azulados/química , Colorantes Azulados/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Células HeLa , Humanos , Ratones , Ratones Transgénicos , Pliegue de Proteína/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Transducción de Señal/fisiología
18.
Proc Natl Acad Sci U S A ; 106(21): 8471-6, 2009 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-19439666

RESUMEN

DnaK is the canonical Hsp70 molecular chaperone protein from Escherichia coli. Like other Hsp70s, DnaK comprises two main domains: a 44-kDa N-terminal nucleotide-binding domain (NBD) that contains ATPase activity, and a 25-kDa substrate-binding domain (SBD) that harbors the substrate-binding site. Here, we report an experimental structure for wild-type, full-length DnaK, complexed with the peptide NRLLLTG and with ADP. It was obtained in aqueous solution by using NMR residual dipolar coupling and spin labeling methods and is based on available crystal structures for the isolated NBD and SBD. By using dynamics methods, we determine that the NBD and SBD are loosely linked and can move in cones of +/-35 degrees with respect to each other. The linker region between the domains is a dynamic random coil. Nevertheless, an average structure can be defined. This structure places the SBD in close proximity of subdomain IA of the NBD and suggests that the SBD collides with the NBD at this area to establish allosteric communication.


Asunto(s)
Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas HSP70 de Choque Térmico/genética , Modelos Moleculares , Mutación/genética , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Especificidad por Sustrato , Factores de Tiempo
19.
Anal Biochem ; 372(2): 167-76, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17904512

RESUMEN

DnaK is a molecular chaperone of Escherichia coli that belongs to a family of conserved 70-kDa heat shock proteins. The Hsp70 chaperones are well known for their crucial roles in regulating protein homeostasis, preventing protein aggregation, and directing subcellular traffic. Given the complexity of functions, a chemical method for controlling the activities of these chaperones might provide a useful experimental tool. However, there are only a handful of Hsp70-binding molecules known. To build this area, we developed a robust, colorimetric, high-throughput screening (HTS) method in 96-well plates that reports on the ATPase activity of DnaK. Using this approach, we screened a 204-member focused library of molecules that share a dihydropyrimidine core common to known Hsp70-binding leads and uncovered seven new inhibitors. Intriguingly, the candidates do not appear to bind the hydrophobic groove that normally interacts with peptide substrates. In sum, we have developed a reliable HTS method that will likely accelerate discovery of small molecules that modulate DnaK/Hsp70 function. Moreover, because this family of chaperones has been linked to numerous diseases, this platform might be used to generate new therapeutic leads.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas HSP70 de Choque Térmico/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Colorimetría , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Cinética , Proteínas Recombinantes/metabolismo
20.
Bioorg Med Chem Lett ; 18(1): 60-5, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18060774

RESUMEN

Molecular chaperones, such as Hsp70 and Hsp90, are responsible for a variety of protective, anti-apoptotic functions. While inhibitors of Hsp90, such as geldanamycin and its derivative 17-AAG, are well known and important anti-cancer leads, Hsp70 has received less attention. Interesting lead candidates for Hsp70 share a dihydropyrimidine core; however, the preferred display of pendant functionality is still not clear. Here, we take advantage of the versatility of peptides to explore the requirements for activity. An exploratory compound collection was assembled by performing a Biginelli cyclocondensation at the terminus of a resin-bound beta-peptide. Liberation from solid support yielded peptide-modified dihydropyrimidines and, within this series, we uncovered compounds that alter the ATPase activity of Hsp70 and its bacterial ortholog, DnaK. Moreover, we identified important contributions made by aromatic, hydrophobic groups. These chemical probes could be used to study the roles of this molecular chaperone in disease.


Asunto(s)
Proteínas HSP70 de Choque Térmico/química , Pirimidinas/química , Pirimidinas/farmacología , Aminoácidos/química , Animales , Fluorenos/química , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Microondas , Oligopéptidos/síntesis química , Oligopéptidos/química , Pirimidinas/síntesis química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...