Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 39(20): 5925-8, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25361121

RESUMEN

We propose and experimentally demonstrate a wavelength-division multiplexed (WDM) optical stealth transmission system carried by amplified spontaneous emission (ASE) noise. The stealth signal is hidden in both time and frequency domains by using ASE noise as the signal carrier. Each WDM channel uses part of the ASE spectrum, which provides more flexibility to apply stealth transmission in a public network and adds another layer of security to the stealth channel. Multi-channel transmission also increases the overall channel capacity, which is the major limitation of the single stealth channel transmission based on ASE noise. The relations between spectral bandwidth and coherence length of ASE carrier have been theoretically analyzed and experimentally investigated.

2.
Opt Express ; 22(12): 14568-74, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24977552

RESUMEN

An optical encryption method based on analog noise is proposed and experimentally demonstrated. The transmitted data is encrypted with wideband analog noise. Without decrypting the data instantly at the receiver, the data is damaged by the noise and cannot be recovered by post-processing techniques. A matching condition in both phase and amplitude of the noise needs to be satisfied between the transmitter and the receiver to cancel the noise. The precise requirement of the phase and amplitude matching condition provides a large two-dimensional key space, which can be deployed in the encryption and decryption process at the transmitter and receiver.

3.
Opt Express ; 22(1): 954-61, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24515055

RESUMEN

A temporal phase mask encryption method is proposed and experimentally demonstrated to improve the security of the stealth channel in an optical steganography system. The stealth channel is protected in two levels. In the first level, the data is carried by amplified spontaneous emission (ASE) noise, which cannot be detected in either the time domain or spectral domain. In the second level, even if the eavesdropper suspects the existence of the stealth channel, each data bit is covered by a fast changing phase mask. The phase mask code is always combined with the wide band noise from ASE. Without knowing the right phase mask code to recover the stealth data, the eavesdropper can only receive the noise like signal with randomized phase.


Asunto(s)
Algoritmos , Gráficos por Computador , Seguridad Computacional , Interpretación de Imagen Asistida por Computador/métodos , Almacenamiento y Recuperación de la Información/métodos , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA