Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 17: 1303014, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38146544

RESUMEN

Background and objective: Transcranial Burst Electrical Stimulation (tBES) is an innovative non-invasive brain stimulation technique that combines direct current (DC) and theta burst stimulation (TBS) for brain neuromodulation. It has been suggested that the tBES protocol may efficiently induce neuroplasticity. However, few studies have systematically tested neuromodulatory effects and underlying neurophysiological mechanisms by manipulating the polarity of DC and TBS patterns. This study aimed to develop the platform and assess neuromodulatory effects and neuronal activity changes following tBES. Methods: Five groups of rats were exposed to anodal DC combined with intermittent TBS (tBES+), cathodal DC combined with continuous TBS (tBES-), anodal and cathodal transcranial direct current stimulation (tDCS+ and tDCS-), and sham groups. The neuromodulatory effects of each stimulation on motor cortical excitability were analyzed by motor-evoked potentials (MEPs) changes. We also investigated the effects of tBES on both excitatory and inhibitory neural biomarkers. We specifically examined c-Fos and glutamic acid decarboxylase (GAD-65) using immunohistochemistry staining techniques. Additionally, we evaluated the safety of tBES by analyzing glial fibrillary acidic protein (GFAP) expression. Results: Our findings demonstrated significant impacts of tBES on motor cortical excitability up to 30 min post-stimulation. Specifically, MEPs significantly increased after tBES (+) compared to pre-stimulation (p = 0.026) and sham condition (p = 0.025). Conversely, tBES (-) led to a notable decrease in MEPs relative to baseline (p = 0.04) and sham condition (p = 0.048). Although tBES showed a more favorable neuromodulatory effect than tDCS, statistical analysis revealed no significant differences between these two groups (p > 0.05). Additionally, tBES (+) exhibited a significant activation of excitatory neurons, indicated by increased c-Fos expression (p < 0.05), and a reduction in GAD-65 density (p < 0.05). tBES (-) promoted GAD-65 expression (p < 0.05) while inhibiting c-Fos activation (p < 0.05), suggesting the involvement of cortical inhibition with tBES (-). The expression of GFAP showed no significant difference between tBES and sham conditions (p > 0.05), indicating that tBES did not induce neural injury in the stimulated regions. Conclusion: Our study indicates that tBES effectively modulates motor cortical excitability. This research significantly contributes to a better understanding of the neuromodulatory effects of tBES, and could provide valuable evidence for its potential clinical applications in treating neurological disorders.

2.
Front Aging Neurosci ; 14: 848380, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250550

RESUMEN

OBJECTIVE: Cortical electrical stimulation (CES) can modulate cortical excitability through a plasticity-like mechanism and is considered to have therapeutic potentials in Parkinson's disease (PD). However, the precise therapeutic value of such approach for PD remains unclear. Accordingly, we adopted a PD rat model to determine the therapeutic effects of CES. The current study was thus designed to identify the therapeutic potential of CES in PD rats. METHODS: A hemiparkinsonian rat model, in which lesions were induced using unilateral injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle, was applied to identify the therapeutic effects of long-term (4-week) CES with intermittent theta-burst stimulation (iTBS) protocol (starting 24 h after PD lesion observation, 1 session/day, 5 days/week) on motor function and neuroprotection. After the CES intervention, detailed functional behavioral tests including gait analysis, akinesia, open-field locomotor activity, apomorphine-induced rotation as well as degeneration level of dopaminergic neurons were performed weekly up to postlesion week 4. RESULTS: After the CES treatment, we found that the 4-week CES intervention ameliorated the motor deficits in gait pattern, akinesia, locomotor activity, and apomorphine-induced rotation. Immunohistochemistry and tyrosine hydroxylase staining analysis demonstrated that the number of dopamine neurons was significantly greater in the CES intervention group than in the sham treatment group. CONCLUSION: This study suggests that early and long-term CES intervention could reduce the aggravation of motor dysfunction and exert neuroprotective effects in a rat model of PD. Further, this preclinical model of CES may increase the scope for the potential use of CES and serve as a link between animal and PD human studies to further identify the therapeutic mechanism of CES for PD or other neurological disorders.

3.
Front Hum Neurosci ; 16: 972316, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36601128

RESUMEN

Foot drop is a common clinical gait impairment characterized by the inability to raise the foot or toes during walking due to the weakness of the dorsiflexors of the foot. Lumbar spine disorders are common neurogenic causes of foot drop. The accurate prognosis and treatment protocols of foot drop are not well delineated in the scientific literature due to the heterogeneity of the underlying lumbar spine disorders, different severities, and distinct definitions of the disease. For translational purposes, the use of animal disease models could be the best way to investigate the pathogenesis of foot drop and help develop effective therapeutic strategies for foot drops. However, no relevant and reproducible foot drop animal models with a suitable gait analysis method were developed for the observation of foot drop symptoms. Therefore, the present study aimed to develop a ventral root avulsion (VRA)-induced foot drop rat model and record detailed time-course changes of gait pattern following L5, L6, or L5 + L6 VRA surgery. Our results suggested that L5 + L6 VRA rats exhibited changes in gait patterns, as compared to sham lesion rats, including a significant reduction of walking speed, step length, toe spread, and swing phase time, as well as an increased duration of the stance phase time. The ankle kinematic data exhibited that the ankle joint angle increased during the mid-swing stage, indicating a significant foot drop pattern during locomotion. Time-course observations displayed that these gait impairments occurred as early as the first-day post-lesion and gradually recovered 7-14 days post-injury. We conclude that the proposed foot drop rat model with a video-based gait analysis approach can precisely detect the foot drop pattern induced by VRA in rats, which can provide insight into the compensatory changes and recovery in gait patterns and might be useful for serving as a translational platform bridging human and animal studies for developing novel therapeutic strategies for foot drop.

4.
Dev Dyn ; 251(3): 444-458, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34374463

RESUMEN

BACKGROUND: Proper guidance of neuronal axons to their targets is required to assemble neural circuits during the development of the nervous system. However, the mechanism by which the guidance of axonal growth cones is regulated by specific intermediaries activated by receptor signaling pathways to mediate cytoskeleton dynamics is unclear. Vav protein members have been proposed to mediate this process, prompting us to investigate their role in the limb selection of the axon trajectory of spinal lateral motor column (LMC) neurons. RESULTS: We found Vav2 and Vav3 expression in LMC neurons when motor axons grew into the limb. Vav2, but not Vav3, loss-of-function perturbed LMC pathfinding, while Vav2 gain-of-function exhibited the opposite effects, demonstrating that Vav2 plays an important role in motor axon growth. Vav2 knockdown also attenuated the redirectional phenotype of LMC axons induced by Dcc, but not EphA4, in vivo and lateral LMC neurite growth preference to Netrin-1 in vitro. This study showed that Vav2 knockdown and ectopic nonphosphorylable Vav2 mutant expression abolished the Src-induced stronger growth preference of lateral LMC neurites to Netrin-1, suggesting that Vav2 is downstream of Src in this context. CONCLUSIONS: Vav2 is essential for Netrin-1-regulated LMC motor axon pathfinding through Src interaction.


Asunto(s)
Orientación del Axón , Conos de Crecimiento , Netrina-1 , Proteínas Proto-Oncogénicas c-vav , Animales , Orientación del Axón/fisiología , Axones/fisiología , Conos de Crecimiento/fisiología , Neuronas Motoras/fisiología , Netrina-1/fisiología , Proteínas Proto-Oncogénicas c-vav/fisiología
5.
Front Neural Circuits ; 15: 693073, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194304

RESUMEN

Objective: Individuals with different severities of traumatic brain injury (TBI) often suffer long-lasting motor, sensory, neurological, or cognitive disturbances. To date, no neuromodulation-based therapies have been used to manage the functional deficits associated with TBI. Cortical electrical stimulation (CES) has been increasingly developed for modulating brain plasticity and is considered to have therapeutic potential in TBI. However, the therapeutic value of such a technique for TBI is still unclear. Accordingly, an animal model of this disease would be helpful for mechanistic insight into using CES as a novel treatment approach in TBI. The current study aims to apply a novel CES scheme with a theta-burst stimulation (TBS) protocol to identify the therapeutic potential of CES in a weight drop-induced rat model of TBI. Methods: TBI rats were divided into the sham CES treatment group and CES treatment group. Following early and long-term CES intervention (starting 24 h after TBI, 1 session/day, 5 days/week) in awake TBI animals for a total of 4 weeks, the effects of CES on the modified neurological severity score (mNSS), sensorimotor and cognitive behaviors and neuroinflammatory changes were identified. Results: We found that the 4-week CES intervention significantly alleviated the TBI-induced neurological, sensorimotor, and cognitive deficits in locomotor activity, sensory and recognition memory. Immunohistochemically, we found that CES mitigated the glial fibrillary acidic protein (GFAP) activation in the hippocampus. Conclusion: These findings suggest that CES has significant benefits in alleviating TBI-related symptoms and represents a promising treatment for TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Trastornos del Conocimiento , Disfunción Cognitiva , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/terapia , Cognición , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/terapia , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Modelos Animales de Enfermedad , Estimulación Eléctrica , Ratas
6.
J Neurosci ; 41(17): 3808-3821, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33727334

RESUMEN

To assemble the functional circuits of the nervous system, the neuronal axonal growth cones must be precisely guided to their proper targets, which can be achieved through cell-surface guidance receptor activation by ligand binding in the periphery. We investigated the function of paxillin, a focal adhesion protein, as an essential growth cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show paxillin expression in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Paxillin loss-of-function and gain-of-function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of paxillin in motor axon guidance. In addition, a neuron-specific paxillin deletion in mice led to LMC axon trajectory selection errors. We also show that knocking down paxillin attenuates the growth preference of LMC neurites against ephrins in vitro, and erythropoietin-producing human hepatocellular (Eph)-mediated retargeting of LMC axons in vivo, suggesting paxillin involvement in Eph-mediated LMC motor axon guidance. Finally, both paxillin knockdown and ectopic expression of a nonphosphorylable paxillin mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating paxillin as a Src target in Eph signal relay in this context. In summary, our findings demonstrate that paxillin is required for motor axon guidance and suggest its essential role in the ephrin-Eph signaling pathway resulting in motor axon trajectory selection.SIGNIFICANCE STATEMENT During the development of neural circuits, precise connections need to be established among neurons or between neurons and their muscle targets. A protein family found in neurons, Eph, is essential at different stages of neural circuit formation, including nerve outgrowth and pathfinding, and is proposed to mediate the onset and progression of several neurodegenerative diseases, such as Alzheimer's disease. To investigate how Ephs relay their signals to mediate nerve growth, we investigated the function of a molecule called paxillin and found it important for the development of spinal nerve growth toward their muscle targets, suggesting its role as an effector of Eph signals. Our work could thus provide new information on how neuromuscular connectivity is properly established during embryonic development.


Asunto(s)
Axones/fisiología , Paxillin/fisiología , Médula Espinal/crecimiento & desarrollo , Animales , Orientación del Axón/fisiología , Embrión de Pollo , Electroporación , Efrinas/fisiología , Femenino , Técnicas de Silenciamiento del Gen , Genes src/genética , Humanos , Masculino , Ratones , MicroARNs/genética , Neuronas Motoras/fisiología , Mutación/genética , Neuritas/fisiología , Médula Espinal/citología
7.
Neural Plast ; 2021: 1763533, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34987572

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) is a popular noninvasive technique for modulating motor cortical plasticity and has therapeutic potential for the treatment of Parkinson's disease (PD). However, the therapeutic benefits and related mechanisms of rTMS in PD are still uncertain. Accordingly, preclinical animal research is helpful for enabling translational research to explore an effective therapeutic strategy and for better understanding the underlying mechanisms. Therefore, the current study was designed to identify the therapeutic effects of rTMS on hemiparkinsonian rats. A hemiparkinsonian rat model, induced by unilateral injection of 6-hydroxydopamine (6-OHDA), was applied to evaluate the therapeutic potential of rTMS in motor functions and neuroprotective effect of dopaminergic neurons. Following early and long-term rTMS intervention with an intermittent theta burst stimulation (iTBS) paradigm (starting 24 h post-6-OHDA lesion, 1 session/day, 7 days/week, for a total of 4 weeks) in awake hemiparkinsonian rats, the effects of rTMS on the performance in detailed functional behavioral tests, including video-based gait analysis, the bar test for akinesia, apomorphine-induced rotational analysis, and tests of the degeneration level of dopaminergic neurons, were identified. We found that four weeks of rTMS intervention significantly reduced the aggravation of PD-related symptoms post-6-OHDA lesion. Immunohistochemically, the results showed that tyrosine hydroxylase- (TH-) positive neurons in the substantia nigra pars compacta (SNpc) and fibers in the striatum were significantly preserved in the rTMS treatment group. These findings suggest that early and long-term rTMS with the iTBS paradigm exerts neuroprotective effects and mitigates motor impairments in a hemiparkinsonian rat model. These results further highlight the potential therapeutic effects of rTMS and confirm that long-term rTMS treatment might have clinical relevance and usefulness as an additional treatment approach in individuals with PD.


Asunto(s)
Marcha/fisiología , Corteza Motora/fisiopatología , Destreza Motora/fisiología , Neuroprotección/fisiología , Enfermedad de Parkinson Secundaria/terapia , Estimulación Magnética Transcraneal/métodos , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Masculino , Corteza Motora/metabolismo , Oxidopamina , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/metabolismo , Enfermedad de Parkinson Secundaria/fisiopatología , Ratas , Ratas Wistar , Tirosina 3-Monooxigenasa/metabolismo
8.
Res Rep Urol ; 11: 15-19, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30697534

RESUMEN

PURPOSE: Ureter avulsion, a challenging urologic complication, has been rarely found in lumbar spine surgeries. Once ignored, the leaked urine usually leads to significant morbidity and also makes further repair more difficult. We present an unusual ureter injury causing a long defect which occurred in posterior spine fusion; immediate repair was performed with minimal invasion. CASE PRESENTATION: A 61-year-old female was receiving microscopic spine fusion (transforaminal lumbar interbody fusion) for her L3-L5 spondylosis. Ureter avulsion with one 3-cm defect occurred unexpectedly. We confirmed urine extravasation promptly, and performed end-to-end ureteroureterostomy with laparoscopy. Retrograde double-J stenting was indwelled. Her postoperative condition was uneventful. CONCLUSION: This rare case with good outcome highlights the importance of early diagnosis and immediate repair for complete ureter avulsion. We prove that reanastomosis for ureter loss as much as 3 cm is feasible with laparoscopy in regional hospitals where a robot is not available. To deal with large gaps between stumps, adequate kidney mobilization is required before anastomosis.

9.
Dev Dyn ; 247(9): 1043-1056, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30016580

RESUMEN

BACKGROUND: The development of a functioning nervous system requires precise assembly of neuronal connections, which can be achieved by the guidance of axonal growth cones to their proper targets. How axons are guided by signals transmitted to the cytoskeleton through cell surface-expressed guidance receptors remains unclear. We investigated the function of Nck2 adaptor protein as an essential guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory into the limb. RESULTS: Nck2 mRNA and protein are preferentially expressed in the medial subgroups of chick LMC neurons during axon trajectory into the limb. Nck2 loss- and gain-of-function in LMC neurons using in ovo electroporation perturb LMC axon trajectory selection demonstrating an essential role of Nck2 in motor axon guidance. We also showed that Nck2 knockdown and overexpression perturb the growth preference of LMC neurites against ephrins in vitro and Eph-mediated redirection of LMC axons in vivo. Finally, the significant changes of LMC neurite growth preference against ephrins in the context of Nck2 and α2-chimaerin loss- and gain-of-function implicated Nck2 function to modulate α2-chimaerin activity. CONCLUSIONS: Here, we showed that Nck2 is required for Eph-mediated axon trajectory selection from spinal motor neurons through possible interaction with α2-chimaerin. Developmental Dynamics 247:1043-1056, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Orientación del Axón/fisiología , Extremidades/fisiología , Conos de Crecimiento/fisiología , Neuronas Motoras/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Embrión de Pollo , Quimerina 1/metabolismo , Efrinas/fisiología , Extremidades/embriología , Neuritas , Receptores de la Familia Eph/metabolismo
10.
J Neurosci ; 38(8): 2043-2056, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29363583

RESUMEN

The precise assembly of a functional nervous system relies on the guided migration of axonal growth cones, which is made possible by signals transmitted to the cytoskeleton by cell surface-expressed guidance receptors. We investigated the function of ephexin1, a Rho guanine nucleotide exchange factor, as an essential growth-cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show that ephexin1 is expressed in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Ephexin1 loss of function and gain of function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of ephexin1 in motor axon guidance. In addition, ephexin1 loss in mice of either sex led to LMC axon trajectory selection errors. We also show that ephexin1 knockdown attenuates the growth preference of LMC neurites against ephrins in vitro and Eph receptor-mediated retargeting of LMC axons in vivo, suggesting that ephexin1 is required in Eph-mediated LMC motor axon guidance. Finally, both ephexin1 knockdown and ectopic expression of nonphosphorylatable ephexin1 mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating ephexin1 as an Src target in Eph signal relay in this context. In summary, our findings demonstrate that ephexin1 is essential for motor axon guidance and suggest an important role in relaying ephrin:Eph signals that mediate motor axon trajectory selection.SIGNIFICANCE STATEMENT The proper development of functioning neural circuits requires precise nerve connections among neurons or between neurons and their muscle targets. The Eph tyrosine kinase receptors expressed in neurons are important in many contexts during neural-circuit formation, such as axon outgrowth, axon guidance, and synaptic formation, and have been suggested to be involved in neurodegenerative disorders, including amyotrophic lateral sclerosis and Alzheimer's disease. To dissect the mechanism of Eph signal relay, we studied ephexin1 gain of function and loss of function and found ephexin1 essential for the development of limb nerves toward their muscle targets, concluding that it functions as an intermediary to relay Eph signaling in this context. Our work could thus shed new light on the molecular mechanisms controlling neuromuscular connectivity during embryonic development.


Asunto(s)
Orientación del Axón/fisiología , Axones/ultraestructura , Factores de Intercambio de Guanina Nucleótido/metabolismo , Neuronas Motoras/citología , Animales , Axones/metabolismo , Embrión de Pollo , Efrinas/metabolismo , Extremidades/inervación , Ratones , Neuronas Motoras/metabolismo , Músculo Esquelético/inervación
12.
J Formos Med Assoc ; 104(9): 639-46, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16276438

RESUMEN

BACKGROUND AND PURPOSE: Despite recent improvements in emergency care medicine, outcome for prehospital cardiac arrest patients remains poor in southern Taiwan due to lack of training and authorization of emergency medical technicians to perform advanced life support. The purpose of this study was to analyze the characteristics of these patients and to identify possible predictive factors for final hospital discharge. METHODS: We retrospectively reviewed the characteristics of 361 prehospital cardiac arrest patients (male:female, 226:135; median age, 69 years) undergoing cardiopulmonary resuscitation (CPR) on arrival at the emergency department (ED) between January 1, 2001 and December 31, 2003. Multivariate analysis was performed by fitting explanatory variables into logistic regression models with respect to the outcomes of admission and to hospital discharge. RESULTS: The overall survival rate was 21.1% (n = 76) to hospital admission and 7.2% (26) to hospital discharge. About half (54%) of the 26 patients who survived had cardiac disease. Only 3 patients received CPR from a bystander, and 2 of them survived. None of the patients received electrical defibrillation before arriving at hospital because emergency personnel were not authorized to perform advanced cardiac life support (ACLS) in Southern Taiwan during the study period. Factors that predicted survival to hospital discharge included a short interval between the cardiac arrest and arrival at the ED, initial rhythm of ventricular tachycardia/ventricular fibrillation (VT/VF), lower atropine dose, higher level of hemoglobin, less multiple organ failure, and shorter duration of resuscitation in the ED. Nine of the 32 patients (28%) with VT/VF survived compared with 5 of 49 (10%) with pulseless electrical activity and only 12 of 231 (5%) with asystole. No patients who required resuscitation for longer than 20 minutes in the ED survived to hospital discharge. CONCLUSION: The results of this study illustrate that patients with VT/VF have good potential for successful resuscitation. Prompt resuscitation and easy access for ACLS are the key factors for success. Survival rates are likely to improve if more lay people perform CPR and if emergency unit personnel are trained and allowed to perform ACLS.


Asunto(s)
Servicio de Urgencia en Hospital , Paro Cardíaco/mortalidad , Adulto , Anciano , Anciano de 80 o más Años , Reanimación Cardiopulmonar , Electrocardiografía , Femenino , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...