Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540561

RESUMEN

Coriolis mass flowmeters are highly customized products involving high-degree fluid-structure coupling dynamics and high-precision manufacture. The typical delay from from order to shipment is at least 4 months. This paper presents some important design considerations through simulation and experiments, so as to provide manufacturers with a more time-efficient product design and manufacture process. This paper aims at simulating the fluid-structure coupling dynamics of a dual U-tube Coriolis mass flowmeter through the COMSOL simulation package. The simulation results are experimentally validated using a dual U-tube CMF manufactured by Yokogawa Co., Ltd. in a TAF certified flow testing factory provided by FineTek Co., Ltd. Some important design considerations are drawn from simulation and experiment. The zero drift will occur when the dual U-tube structure is unbalanced and therefore the dynamic balance is very important in the manufacturing of dual U-tube CMF. The fluid viscosity can be determined from the driving current of the voice coil actuator or the pressure loss between the inlet and outlet of CMF. Finally, the authors develop a simulation application based on COMSOL's development platform. Users can quickly evaluate their design through by using this application. The present application can significantly shorten product design and manufacturing time.

2.
Biomed J ; 43(4): 318-324, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32654885

RESUMEN

Aggressive tracing of contacts of confirmed cases is crucial to Taiwan's successful control of the early spread of COVID-19. As the pandemic lingers, an epidemiological investigation that can be conducted efficiently in a timely manner can help decrease the burden on the health personnel and increase the usefulness of such information in decision making. To develop a new tool that can improve the current practice of epidemiological investigation by incorporating new technologies in digital platform and knowledge graphs. To meet the various needs of the epidemiological investigation, we decided to develop an e-Outbreak Platform that provides a semi-structured, multifaceted, computer-aided questionnaire for outbreak investigation. There are three major parts of the platform: (1) a graphic portal that allows users to have an at-glance grasp of the functions provided by the platform and then choose the one they need; (2) disease-specific questionnaires that can accommodate different formats of the information, including text typing, button selection, and pull-down menu; and (3) functions to utilize the stored information, including report generation, statistical analyses, and knowledge graphs displaying contact tracing. When the number of outbreak investigation increases, the knowledge graphs can be extended to encompass other persons appearing in the same location at the same time, i.e., constituting a potential contact cluster. The information extracted can also be used to display the tracing on a map in animation. Overall, this system can provide a basis for further refinement that can be generalized to a variety of outbreak investigations.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/diagnóstico , Brotes de Enfermedades/prevención & control , Neumonía Viral/diagnóstico , Encuestas y Cuestionarios , COVID-19 , Femenino , Humanos , Masculino , Pandemias , SARS-CoV-2 , Taiwán
3.
Sensors (Basel) ; 19(5)2019 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-30857320

RESUMEN

The internal temperature is an important index for the prevention and maintenance of a spindle. However, the temperature inside the spindle is undetectable directly because there is no space to embed a temperature sensor, and drilling holes will reduce its mechanical stiffness. Therefore, it is worthwhile understanding the thermal-feature of a spindle. This article presents a methodology to identify the thermal-feature model of an externally driven spindle. The methodology contains self-made hardware of the temperature sensing and wireless transmission module (TSWTM) and software for the system identification (SID); the TSWTM acquires the temperature training data, while the SID identifies the parameters of the thermal-feature model of the spindle. Then the resulting thermal-feature model is written into the firmware of the TSWTM to give it the capability of accurately calculating the internal temperature of the spindle from its surface temperature during the operation, or predicting its temperature at various speeds. The thermal-feature of the externally driven spindle is modeled by a linearly time-invariant state-space model whose parameters are identified by the SID, which integrates the command "n4sid" provided by the System ID Toolbox of MATLAB and the k-fold cross-validation that is common in machine learning. The present SID can effectively strike a balance between the bias and variance of the model, such that both under-fitting and over-fitting can be avoided. The resulting thermal-feature model can not only predict the temperature of the spindle rotating at various speeds but can also calculate the internal temperature of the spindle from its surface temperature. Its validation accuracy is higher than 98.5%. This article illustrates the feasibility of accurately calculating the internal temperature (undetectable directly) of the spindle from its surface temperature (detectable directly).

4.
Opt Express ; 26(8): 9984-9999, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29715943

RESUMEN

Fullerene in the plasmon fullerene cavity is utilized to propagate plasmon energy in order to break the confinement of the plasmonic coupling effect, which relies on the influential near-field optical region. It acts as a plasmonic inductor for coupling gold nano-islands to the gold film; the separation distances of the upper and lower layers are longer than conventional plasmonic cavities. This coupling effect causes the discrete and continuum states to cooperate together in a cavity and produces asymmetric curve lines in the spectra, producing a hybridized resonance. The effect brings about a bright and saturated displaying film with abundant visible colors. In addition, the reflection spectrum is nearly omnidirectional, shifting by only 5% even when the incident angle changes beyond ± 60°. These advantages allow plasmon fullerene cavities to be applied to reflectors, color filters, visible chromatic sensors, and large-area display.

5.
Sensors (Basel) ; 18(2)2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-29473877

RESUMEN

Thermal characteristic analysis is essential for machine tool spindles because sudden failures may occur due to unexpected thermal issue. This article presents a lumped-parameter Thermal Network Model (TNM) and its parameter estimation scheme, including hardware and software, in order to characterize both the steady-state and transient thermal behavior of machine tool spindles. For the hardware, the authors develop a Bluetooth Temperature Sensor Module (BTSM) which accompanying with three types of temperature-sensing probes (magnetic, screw, and probe). Its specification, through experimental test, achieves to the precision ±(0.1 + 0.0029|t|) °C, resolution 0.00489 °C, power consumption 7 mW, and size Ø40 mm × 27 mm. For the software, the heat transfer characteristics of the machine tool spindle correlative to rotating speed are derived based on the theory of heat transfer and empirical formula. The predictive TNM of spindles was developed by grey-box estimation and experimental results. Even under such complicated operating conditions as various speeds and different initial conditions, the experiments validate that the present modeling methodology provides a robust and reliable tool for the temperature prediction with normalized mean square error of 99.5% agreement, and the present approach is transferable to the other spindles with a similar structure. For realizing the edge computing in smart manufacturing, a reduced-order TNM is constructed by Model Order Reduction (MOR) technique and implemented into the real-time embedded system.

6.
Sci Rep ; 6: 32884, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27616161

RESUMEN

Bone tissue engineering provides many advantages for repairing skeletal defects. Although many different kinds of biomaterials have been used for bone tissue engineering, safety issues must be considered when using them in a clinical setting. In this study, we examined the effects of using a common clinical item, a hemostatic gelatin sponge, as a scaffold for bone tissue engineering. The use of such a clinically acceptable item may hasten the translational lag from laboratory to clinical studies. We performed both degradation and biocompatibility studies on the hemostatic gelatin sponge, and cultured preosteoblasts within the sponge scaffold to demonstrate its osteogenic differentiation potential. In degradation assays, the gelatin sponge demonstrated good stability after being immersed in PBS for 8 weeks (losing only about 10% of its net weight and about 54% decrease of mechanical strength), but pepsin and collagenases readily biodegraded it. The gelatin sponge demonstrated good biocompatibility to preosteoblasts as demonstrated by MTT assay, confocal microscopy, and scanning electron microscopy. Furthermore, osteogenic differentiation and the migration of preosteoblasts, elevated alkaline phosphatase activity, and in vitro mineralization were observed within the scaffold structure. Each of these results indicates that the hemostatic gelatin sponge is a suitable scaffold for bone tissue engineering.


Asunto(s)
Gelatina/química , Osteoblastos/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Fosfatasa Alcalina/metabolismo , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Hemostáticos , Ratones , Osteoblastos/metabolismo , Osteogénesis
7.
Sensors (Basel) ; 14(4): 6877-90, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24743159

RESUMEN

The high quality properties and benefits of graphene-oxide have generated an active area of research where many investigations have shown potential applications in various technological fields. This paper proposes a methodology for enhancing the pyro-electricity of PVDF by graphene-oxide doping. The PVDF film with graphene-oxide is prepared by the sol-gel method. Firstly, PVDF and graphene-oxide powders are dispersed into dimethylformamide as solvent to form a sol solution. Secondly, the sol solution is deposited on a flexible ITO/PET substrate by spin-coating. Thirdly, the particles in the sol solution are polymerized through baking off the solvent to produce a gel in a state of a continuous network of PVDF and graphene-oxide. The final annealing process pyrolyzes the gel and form a ß-phase PVDF film with graphene-oxide doping. A complete study on the process of the graphene oxide doping of PVDF is accomplished. Some key points about the process are addressed based on experiments. The solutions to some key issues are found in this work, such as the porosity of film, the annealing temperature limitation by the use of flexible PET substrate, and the concentrations of PVDF and graphene-oxide.

8.
Sensors (Basel) ; 12(12): 17094-111, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23235449

RESUMEN

This paper develops the technologies of mechanical characterization of CMOS-MEMS devices, and presents a robust algorithm for extracting mechanical properties, such as Young's modulus, and mean stress, through the external electrical circuit behavior of the micro test-key. An approximate analytical solution for the pull-in voltage of bridge-type test-key subjected to electrostatic load and initial stress is derived based on Euler's beam model and the minimum energy method. Then one can use the aforesaid closed form solution of the pull-in voltage to extract the Young's modulus and mean stress of the test structures. The test cases include the test-key fabricated by a TSMC 0.18 µm standard CMOS process, and the experimental results refer to Osterberg's work on the pull-in voltage of single crystal silicone microbridges. The extracted material properties calculated by the present algorithm are valid. Besides, this paper also analyzes the robustness of this algorithm regarding the dimension effects of test-keys. This mechanical properties extracting method is expected to be applicable to the wafer-level testing in micro-device manufacture and compatible with the wafer-level testing in IC industry since the test process is non-destructive.


Asunto(s)
Módulo de Elasticidad , Ensayo de Materiales , Sistemas Microelectromecánicos , Algoritmos , Humanos , Fenómenos Mecánicos , Estrés Mecánico
9.
Sensors (Basel) ; 10(6): 6149-71, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-22219707

RESUMEN

Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices.


Asunto(s)
Diseño de Equipo , Sistemas Microelectromecánicos/instrumentación , Modelos Teóricos , Electricidad Estática , Diseño de Equipo/métodos , Humanos , Sistemas Microelectromecánicos/métodos , Microtecnología , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...