Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(36): 24783-24788, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37671576

RESUMEN

In past decades, hydrogen bonds involving organic fluorine have been a highly disputed topic. Obtaining clear evidence for the presence of fluorine-specific interactions is generally difficult because of their weak nature. Today, the existence of hydrogen bonds with organic fluorine is widely accepted and supported by numerous studies. However, strong bonds with short H⋯F distances remain scarce and are primarily found in designed model compounds. Using a combination of cryogenic gas-phase infrared spectroscopy and density functional theory, we here analyze a series of conformationally unrestrained fluorinated phenylalanine compounds as protonated species. The results suggest proximal NH+⋯F hydrogen bonds with an exceptionally close H⋯F distance (1.79 Å) in protonated ortho-fluorophenylalanine.

2.
European J Org Chem ; 2022(15): e202200255, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35915640

RESUMEN

Fluorination is a potent method to modulate chemical properties of glycans. Here, we study how C3- and C6-fluorination of glucosyl building blocks influence the structure of the intermediate of the glycosylation reaction, the glycosyl cation. Using a combination of gas-phase infrared spectroscopy and first-principles theory, glycosyl cations generated from fluorinated and non-fluorinated monosaccharides are structurally characterized. The results indicate that neighboring group participation of the C2-benzoyl protecting group is the dominant structural motif for all building blocks, correlating with the ß-selectivity observed in glycosylation reactions. The infrared signatures indicate that participation of the benzoyl group in enhanced by resonance effects. Participation of remote acyl groups such as Fmoc or benzyl on the other hand is unfavored. The introduction of the less bulky fluorine leads to a change in the conformation of the ring pucker, whereas the structure of the active dioxolenium site remains unchanged.

3.
Nat Chem ; 12(12): 1180-1186, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33219361

RESUMEN

Self-assembly is a powerful method to obtain large discrete functional molecular architectures. When using a single building block, self-assembly generally yields symmetrical objects in which all the subunits relate similarly to their neighbours. Here we report the discovery of a family of self-constructing cyclic macromolecules with stable folded conformations of low symmetry, which include some with a prime number (13, 17 and 23) of units, despite being formed from a single component. The formation of these objects amounts to the production of polymers with a perfectly uniform length. Design rules for the spontaneous emergence of such macromolecules include endowing monomers with a strong potential for non-covalent interactions that remain frustrated in competing entropically favoured yet conformationally restrained smaller cycles. The process can also be templated by a guest molecule that itself has an asymmetrical structure, which paves the way to molecular imprinting techniques at the level of single polymer chains.

4.
Phys Chem Chem Phys ; 22(33): 18400-18413, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32797142

RESUMEN

Isolation of biomolecules in vacuum facilitates characterization of the intramolecular interactions that determine three-dimensional structure, but experimental quantification of conformer thermochemistry remains challenging. Infrared spectroscopy of molecules trapped in helium nanodroplets is a promising methodology for the measurement of thermochemical parameters. When molecules are captured in a helium nanodroplet, the rate of cooling to an equilibrium temperature of ca. 0.4 K is generally faster than the rate of isomerization, resulting in "shock-freezing" that kinetically traps molecules in local conformational minima. This unique property enables the study of temperature-dependent conformational equilibria via infrared spectroscopy at 0.4 K, thereby avoiding the deleterious effects of spectral broadening at higher temperatures. Herein, we demonstrate the first application of this approach to ionic species by coupling electrospray ionization mass spectrometry (ESI-MS) with helium nanodroplet infrared action spectroscopy to probe the structure and thermochemistry of deprotonated DNA dinucleotides. Dinucleotide anions were generated by ESI, confined in an ion trap at temperatures between 90 and 350 K, and entrained in traversing helium nanodroplets. The infrared action spectra of the entrained ions show a strong dependence on pre-pickup ion temperature, consistent with the preservation of conformer population upon cooling to 0.4 K. Non-negative matrix factorization was utilized to identify component conformer infrared spectra and determine temperature-dependent conformer populations. Relative enthalpies and entropies of conformers were subsequently obtained from a van't Hoff analysis. IR spectra and conformer thermochemistry are compared to results from ion mobility spectrometry (IMS) and electronic structure methods. The implementation of ESI-MS as a source of dopant molecules expands the diversity of molecules accessible for thermochemical measurements, enabling the study of larger, non-volatile species.


Asunto(s)
ADN/química , Oligodesoxirribonucleótidos/química , Frío , Helio/química , Nanoestructuras/química , Conformación de Ácido Nucleico , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Infrarroja , Termodinámica
5.
Angew Chem Int Ed Engl ; 58(24): 8216-8220, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-30958917

RESUMEN

More than 100 hydrophobicity scales have been introduced, with each being based on a distinct condensed-phase approach. However, a comparison of the hydrophobicity values gained from different techniques, and their relative ranking, is not straightforward, as the interactions between the environment and the amino acid are unique to each method. Here, we overcome this limitation by studying the properties of amino acids in the clean-room environment of the gas phase. In the gas phase, entropic contributions from the hydrophobic effect are by default absent and only the polarity of the side chain dictates the self-assembly. This allows for the derivation of a novel hydrophobicity scale, which is based solely on the interaction between individual amino acid units within the cluster and thus more accurately reflects the intrinsic nature of a side chain. This principle can be further applied to classify non-natural derivatives, as shown here for fluorinated amino acid variants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...