Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 24(15): 16822-34, 2016 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-27464135

RESUMEN

Avoided resonance crossings (ARC) in plasmonic nanodisk structures due to near field or far field couplings were numerically demonstrated. Near field coupling in disk dimmer with both vertical or side-by-side arrangement leads to both energy and linewidth anti-crossing by varying one disk size across the other. Far field coupling in double layered disk arrays of extremely small gap size or gap size with Fabry Perot resonant condition close to the frequency selective surface (FSS) stopband center leads to non-reciprocal absorption spectrum as one disk size varying across the other. We observe linewidth anti-crossing but energy crossing of the absorption peak from different side illumination by varying either the size of one disk array or the gap in hetero disk arrays. The disappearing of Fabry-Perot resonant mode from one side illumination and the appearing of nonreciprocal nearly perfect absorption from the other side illumination are well explained by a FSS-Fabry-Perot model.

2.
ACS Nano ; 7(6): 5330-42, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23651267

RESUMEN

Photothermal cancer therapy using near-infrared (NIR) laser radiation is an emerging treatment. In the NIR region, two biological transparency windows are located in 650-950 nm (first NIR window) and 1000-1350 nm (second NIR window) with optimal tissue transmission obtained from low scattering and energy absorption, thus providing maximum radiation penetration through tissue and minimizing autofluorescence. To date, intensive effort has resulted in the generation of various methods that can be used to shift the absorbance of nanomaterials to the 650-950 nm NIR regions for studying photoinduced therapy. However, NIR light absorbers smaller than 100 nm in the second NIR region have been scant. We report that a Au nanorod (NR) can be designed with a rod-in-shell (rattle-like) structure smaller than 100 nm that is tailored to be responsive to the first and second NIR windows, in which we can perform hyperthermia-based therapy. In vitro performance clearly displays high efficacy in the NIR photothermal destruction of cancer cells, showing large cell-damaged area beyond the laser-irradiated area. This marked phenomenon has made the rod-in-shell structure a promising hyperthermia agent for the in vivo photothermal ablation of solid tumors when activated using a continuous-wave 808 m (first NIR window) or a 1064 nm (second NIR window) diode laser. We tailored the UV-vis-NIR spectrum of the rod-in-shell structure by changing the gap distance between the Au NR core and the AuAg nanoshell, to evaluate the therapeutic effect of using a 1064 nm diode laser. Regarding the first NIR window with the use of an 808 nm diode laser, rod-in-shell particles exhibit a more effective anticancer efficacy in the laser ablation of solid tumors compared to Au NRs.


Asunto(s)
Oro/química , Rayos Infrarrojos , Nanotubos/química , Radioterapia/métodos , Absorción , Animales , Línea Celular Tumoral , Rayos Láser , Neoplasias Pulmonares/radioterapia , Masculino , Ratones , Nanotubos/toxicidad , Polietilenglicoles/química , Plata/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...