Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Cancer Res ; 84(6): 800-807, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38231470

RESUMEN

Activation of effector T cells leads to upregulation of PD-1, which can inhibit T-cell activity following engagement with its ligand PD-L1. Post-translational modifications (PTM), including glycosylation, phosphorylation, ubiquitination, and palmitoylation, play a significant role in regulating PD-1 protein stability, localization, and interprotein interactions. Targeting PTM of PD-1 in T cells has emerged as a potential strategy to overcome PD-1-mediated immunosuppression in cancer and enhances antitumor immunity. The regulatory signaling pathways that induce PTM of PD-1 can be suppressed with small-molecule inhibitors, and mAbs can directly target PD-1 PTMs. Preliminary outcomes from exploratory studies suggest that focusing on the PTM of PD-1 has strong therapeutic potential and can enhance the response to anti-PD-1.


Asunto(s)
Neoplasias , Receptor de Muerte Celular Programada 1 , Humanos , Procesamiento Proteico-Postraduccional , Ubiquitinación , Neoplasias/metabolismo , Inmunoterapia , Antígeno B7-H1/metabolismo
2.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37445640

RESUMEN

Graphene oxide-based materials (GOBMs) have been widely explored as nano-reinforcements in cementitious composites due to their unique properties. Oxygen-containing functional groups in GOBMs are crucial for enhancing the microstructure of cementitious composites. A better comprehension of their surface chemistry and mechanisms is required to advance the potential applications in cementitious composites of functionalized GOBMs. However, the mechanism by which the oxygen-containing functional groups enhance the response of cementitious composites is still unclear, and controlling the surface chemistry of GOBMs is currently constrained. This review aims to investigate the reactions and mechanisms for functionalized GOBMs as additives incorporated in cement composites. A variety of GOBMs, including graphene oxide (GO), hydroxylated graphene (HO-G), edge-carboxylated graphene (ECG), edge-oxidized graphene oxide (EOGO), reduced graphene oxide (rGO), and GO/silane composite, are discussed with regard to their oxygen functional groups and interactions with the cement microstructure. This review provides insight into the potential benefits of using GOBMs as nano-reinforcements in cementitious composites. A better understanding of the surface chemistry and mechanisms of GOBMs will enable the development of more effective functionalization strategies and open up new possibilities for the design of high-performance cementitious composites.


Asunto(s)
Grafito , Grafito/química , Oxígeno
3.
J Control Release ; 360: 260-273, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37364798

RESUMEN

T lymphocytes served as immune surveillance to suppress metastases by physically interacting with cancer cells. Whereas tumor immune privilege and heterogeneity protect immune attack, it limits immune cell infiltration into tumors, especially in invasive metastatic clusters. Here, a catalytic antigen-capture sponge (CAS) containing the catechol-functionalized copper-based metal organic framework (MOF) and chloroquine (CQ) for programming T cells infiltration is reported. The intravenously injected CAS accumulates at the tumor via the folic acid-mediated target and margination effect. In metastases, Fenton-like reaction induced by copper ions of CAS disrupts the intracellular redox potential, i.e., chemodynamic therapy (CDT), thereby reducing glutathione (GSH) levels. Furthermore, CQ helps inhibit autophagy by inducing lysosomal deacidification during CDT. This process leads to the breakdown of self-defense mechanisms, which exacerbates cytotoxicity. The therapies promote the liberation of tumor-associated antigens, such as neoantigens and damage-associated molecular patterns (DAMPs). Subsequently, the catechol groups present on CAS perform as antigen reservoirs and transport the autologous tumor-associated antigens to dendritic cells, resulting in prolonged immune activation. The CAS, which is capable of forming in-situ, serves as an antigen reservoir in CDT-mediated lung metastasis and leads to the accumulation of immune cells in metastatic clusters, thus hindering metastatic tumors.


Asunto(s)
Neoplasias Pulmonares , Neoplasias , Humanos , Linfocitos T , Cobre , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Inmunoterapia/métodos , Antígenos de Neoplasias , Células Dendríticas , Línea Celular Tumoral
4.
Appl Biochem Biotechnol ; 195(7): 4215-4236, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36689162

RESUMEN

The research of obesity and gut microbiota has been carried out for years, yet the study process was in a slow pace for several challenges to conquer. As a complex status of disorder, the contributing factors refer to gut microbiota about obesity were controversial in a wide range. In terms of proteomics, 2D-DIGE technology is a powerful method for this study to identify fecal proteins from lean microbiota in Dusp6 knockout C57BL/6J mice, exploring the protein markers of the ability resisting to diet-induced obesity (DIO) transferred to the host mice after fecal microbiota transplantation. The results showed that the fecal microbiota expressed 289 proteins differentially with 23 proteins identified, which were considered to be the reasons to assist the microbiota exhibiting distinct behavior. By means of proteomics technology, we had found that differentially expressed proteins of lean microbiota determined the lean microbial behavior might be able to resist leaky gut. To sum up our study, the proteomics strategies offered as a tool to demonstrate and analyze the features of lean microbiota, providing new speculations in the behavior about the gut microbiota reacting to DIO.


Asunto(s)
Microbiota , Obesidad , Ratones , Animales , Ratones Noqueados , Ratones Endogámicos C57BL , Obesidad/genética , Dieta
5.
Medicina (Kaunas) ; 59(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36676731

RESUMEN

This cross-sectional observation study investigated the vitamin D (VD) status in Taiwanese pregnant women and the effects of VD supplementation and macronutrient intake on serum 25-hydroxy-vitamin D (25[OH]D) level. Data on VD intake, daily sunlight exposure, and carbohydrate intake were obtained from 125 pregnant women at 30−37 weeks' gestation. Serum 25[OH]D level was measured before delivery in all enrolled women; and the mean 25(OH)D level was 43 nmol/L or 17.2 ng/mL. The 25(OH)D level was significantly correlated with total VD intake of pregnant women (r = 0.239; p = 0.007). The severe VD deficiency group (n = 16; mean of 25(OH)D level = 8.5 ng/mL) had significantly lower total VD intake and supplementation than the groups with VD deficiency (n = 69), insufficiency (n = 32), and sufficiency (n = 8). Those with ≥400 IU/day total VD intake (including VD from food and supplementation) had significantly higher 25(OH)D concentration than those with <400 IU/day total VD intake. Those with 400 IU/day VD supplementation could significantly increase serum 25(OH)D concentrations for pregnant women. Among 85 pregnant women with carbohydrate intake of ≥300 g/day, serum 25(OH)D levels were negatively correlated with carbohydrate intake (p = 0.031). In conclusion, VD deficiency was highly prevalent in Taiwanese pregnant women. VD supplementation was the most effective method for increasing 25(OH)D concentration in pregnant women. Higher carbohydrate intake might reduce 25(OH)D levels.


Asunto(s)
Mujeres Embarazadas , Deficiencia de Vitamina D , Femenino , Humanos , Embarazo , Estudios Transversales , Suplementos Dietéticos , Vitamina D/uso terapéutico , Deficiencia de Vitamina D/complicaciones , Vitaminas , Carbohidratos
6.
ACS Biomater Sci Eng ; 9(5): 2148-2155, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-35156796

RESUMEN

Graphene oxide (GO) has been widely used in biological sensing studies because of its excellent physical and chemical properties. In particular, the rich functional groups on the surface of GO can effectively enhance the bonding of biomolecules and serve as an efficient sensing substrate. However, when biomolecules are labeled with fluorescence, the GO interface affects the biomolecules by reducing the fluorescence properties and limiting their applications in biosensing. Here, we establish an annealed GO (aGO) substrate through the annealing process, which can effectively increase the bonding amount of a DNA probe because of the accumulation of oxygen atoms on the surface without significantly damaging the nanosheet structure. Furthermore, we prove that the aGO substrate can effectively maintain its fluorescence performance and stability by exposing more graphic domains. Overall, this study successfully verifies that GO's interface annealing modification can be used as an alternative innovative interface application in biosensing.


Asunto(s)
Grafito , Óxidos , Óxidos/química , Fluorescencia
7.
Am J Cancer Res ; 12(10): 4721-4736, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36381324

RESUMEN

N-linked glycosylation of proteins is one of the post-translational modifications (PTMs) that shield tumor antigens from immune attack. Signaling lymphocytic activation molecule family 7 (SLAMF7) suppresses cancer cell phagocytosis and is an ideal target under clinical development. PTM of SLAMF7, however, remains less understood. In this study, we investigated the role of N-glycans on SLAMF7 in breast cancer progression. We identified seven N-linked glycosylation motifs on SLAMF7, which are majorly occupied by complex structures. Evolutionally conserved N98 residue is enriched with high mannose and sialylated glycans. Hyperglycosylated SLAMF7 was associated with STT3A expression in breast cancer cells. Inhibition of STT3A by a small molecule inhibitor, N-linked glycosylation inhibitor-1 (NGI-1), reduced glycosylation of SLAMF7, resulting in enhancing antibody affinity and phagocytosis. To provide an on-target effect, we developed an antibody-drug conjugate (ADC) by coupling the anti-SLAMF7 antibody with NGI-1. Deglycosylation of SLAMF7 increases antibody recognition and promotes macrophage engulfment of breast cancer cells. Our work suggests deglycosylation by ADC is a potential strategy to enhance the response of immunotherapeutic agents.

8.
J Bone Miner Res ; 37(4): 786-793, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35122668

RESUMEN

Exclusively breastfed infants are at a high risk of vitamin D deficiency. Few studies have evaluated the effects of vitamin D supplementation. Hence, we conducted a prospective randomized controlled trial investigating the effects of oral vitamin D3 400 IU/d supplementation in exclusively breastfed newborns. Serum 25-hydroxy-vitamin D (25[OH]D) levels in pregnant women and their newborns were evaluated. Breastfed newborns were randomized to one of two regimens at age 10 days. One group received vitamin D3 supplementation at a dose of 400 IU/d (vD-400 group), whereas the placebo group received a liquid product without vitamin D3. Outcomes were assessed at 4 months of age. A total of 92 pregnant women and their infants were enrolled, and the data of 72 infants (37 in the vD-400 group and 35 in the placebo group) who completed the study at 4 months of age were assessed. The results showed severe vitamin D deficiency in 15.2% of mothers before delivery, while 54.3% had vitamin D deficiency. Moreover, 15.2% of newborns presented with severe vitamin D deficiency at birth, while 52.2% had vitamin D deficiency. Maternal vitamin D levels were significantly correlated with infant vitamin D levels at birth (r = 0.816, p < 0.001). At 4 months of age, weight, head circumference, serum 25(OH)D, phosphorus, and intact parathyroid hormone levels significantly differed between the vD-400 and placebo groups. However, the body length and bone mineral density of the two groups did not differ significantly. Regardless of vitamin D supplementation, participants with severe vitamin D deficiency had significantly higher intact parathyroid hormone levels and lower bone mineral content. In conclusion, among exclusively breastfed infants, oral supplementation with vitamin D3 at a dose of 400 IU/d from age 10 days increased 25(OH)D concentrations at 4 months of age, but it did not affect bone mineralization. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Colecalciferol , Deficiencia de Vitamina D , Lactancia Materna , Niño , Colecalciferol/farmacología , Suplementos Dietéticos , Método Doble Ciego , Femenino , Humanos , Lactante , Recién Nacido , Hormona Paratiroidea/uso terapéutico , Embarazo , Estudios Prospectivos , Vitamina D , Deficiencia de Vitamina D/tratamiento farmacológico , Vitaminas/uso terapéutico
9.
Am J Cancer Res ; 11(10): 4994-5005, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765306

RESUMEN

SARS-CoV-2 exploits the host cellular machinery for virus replication leading to the acute syndrome of coronavirus disease 2019 (COVID-19). Growing evidence suggests SARS-CoV-2 also exacerbates many chronic diseases, including cancers. As mutations on the spike protein (S) emerged as dominant variants that reduce vaccine efficacy, little is known about the relation between SARS-CoV-2 virus variants and cancers. Compared to the SARS-CoV-2 wild-type, the Gamma variant contains two additional NXT/S glycosylation motifs on the S protein. The hyperglycosylated S of Gamma variant is more stable, resulting in more significant epithelial-mesenchymal transition (EMT) potential. SARS-CoV-2 infection promoted NF-κB signaling activation and p65 nuclear translocation, inducing Snail expression. Pharmacologic inhibition of NF-κB activity by nature food compound, I3C suppressed viral replication and Gamma variant-mediated breast cancer metastasis, indicating that NF-κB inhibition can reduce chronic disease in COVID-19 patients. Our study revealed that the Gamma variant of SARS-CoV-2 activates NF-κB and, in turn, triggers the pro-survival function for cancer progression.

10.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34445495

RESUMEN

As the most common gene mutation found in cancers, p53 mutations are detected in up to 96% of high-grade serous ovarian carcinoma (HGSOC). Meanwhile, mutant p53 overexpression is known to drive oncogenic phenotypes in cancer patients and to sustain the activation of EGFR signaling. Previously, we have demonstrated that the combined inhibition of EGFR and MDM2-p53 pathways, by gefitinib and JNJ-26854165, exerts a strong synergistic lethal effect on HGSOC cells. In this study, we investigated whether the gain-of-function p53 mutation (p53R248Q) overexpression could affect EGFR-related signaling and the corresponding drug inhibition outcome in HGSOC. The targeted inhibition responses of gefitinib and JNJ-26854165, in p53R248Q-overexpressing cells, were extensively evaluated. We found that the phosphorylation of AKT increased when p53R248Q was transiently overexpressed. Immunocytochemistry analysis further showed that upon p53R248Q overexpression, several AKT-related regulatory proteins translocated in unique intracellular patterns. Subsequent analysis revealed that, under the combined inhibition of gefitinib and JNJ-26854165, the cytonuclear trafficking of EGFR and MDM2 was disrupted. Next, we analyzed the gefitinib and JNJ-26854165 responses and found differential sensitivity to the single- or combined-drug inhibitions in p53R248Q-overexpressing cells. Our findings suggested that the R248Q mutation of p53 in HGSOC caused significant changes in signaling protein function and trafficking, under EGFR/MDM2-targeted inhibition. Such knowledge could help to advance our understanding of the role of mutant p53 in ovarian carcinoma and to improve the prognosis of patients receiving EGFR/MDM2-targeted therapies.


Asunto(s)
Carcinoma Epitelial de Ovario/genética , Cistadenocarcinoma Seroso/genética , Mutación con Ganancia de Función , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína p53 Supresora de Tumor/genética , Regulación hacia Arriba , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cistadenocarcinoma Seroso/tratamiento farmacológico , Receptores ErbB/antagonistas & inhibidores , Femenino , Gefitinib/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Fosforilación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Triptaminas/farmacología
11.
Am J Cancer Res ; 11(5): 2278-2290, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34094684

RESUMEN

The engagement of human angiotensin-converting enzyme 2 (hACE2) and SARS-CoV-2 spike protein facilitate virus spread. Thus far, ACE2 and TMPRSS2 expression is correlated with the epithelial-mesenchymal transition (EMT) gene signature in lung cancer. However, the mechanism for SARS-CoV-2-induced EMT has not been thoroughly explored. Here, we showed that SARS-CoV-2 induces EMT phenotypic change and stemness in breast cancer cell model and subsequently identified Snail as a modulator for this regulation. The in-depth analysis identifies the spike protein (S), but not envelope (E), nucleocapsid (N), or membrane protein (M), of SARS-CoV-2 induces EMT marker changes. Suppression of Snail expression in these cells abrogates S protein-induced invasion, migration, stemness, and lung metastasis, suggesting that Snail is required for SARS-CoV-2-mediated aggressive phenotype in cancer. This study reveals an important oncogenic role of SARS-CoV-2 in triggering breast cancer metastasis through Snail upregulation.

12.
Biochim Biophys Acta Mol Basis Dis ; 1867(7): 166143, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33864954

RESUMEN

Cancer metastasis is one of most main causes of failure in cancer treatment. Nonetheless, more than half of oral cancer patients were diagnosed as advanced oral cancer with dramatically decreased 5-year survival rate to lower than 20%, while the stages become more advanced. In order to improve oral cancer treatment, the identification of cancer metastatic biomarkers and mechanisms is critical. In the current study, two pairs of oral squamous cell carcinoma lines, OC3/C9, and invasive OC3-I5/C9-I5were used as model systems to investigate invasive mechanism as well as to identify potential therapy-associated targets. Based on our previous proteomic analysis, insulin-like growth factor-binding protein 2 (IGFBP-2) was reported participating in oral cancer metastasis. Subsequent studies have applied interference RNA as well as recombinant protein techniques to confirm the roles of IGFBP-2 in oral cancer metastasis and examine their potency in regulating invasion as well as the mechanism IGFBP-2 involved. The results demonstrated that expression of epithelial-mesenchymal transition (EMT) markers including Twist, Snail1, SIP1, profilin, vimentin, uPA and MMP9 were increased in both OC3-I5 and C9-I5 compared to OC3 and C9 cells, while E-cadherin expression was down-regulated in the OC3-I5 and C9-I5 cells. Moreover, IGFBP-2 is shown to affect not only migration and invasion but also wound healing ability and cell proliferation. Our results also revealed that uPA is a downstream target of IGFBP-2 to intermediate oral cancer metastasis. To sum up, the current studies indicated that elevated IGFBP-2 is strongly correlated with oral cancer metastasis and progression, and that it could potentially serve as a prognostic biomarker as well as an innovative target for the treatment of oral cancer invasion.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/secundario , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Neoplasias de la Boca/patología , Antígenos CD/genética , Antígenos CD/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Cadherinas/genética , Cadherinas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Movimiento Celular , Proliferación Celular , Humanos , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Invasividad Neoplásica , Células Tumorales Cultivadas
13.
Biomicrofluidics ; 15(2): 024106, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33868535

RESUMEN

In this experimental study, a portable biosensor was developed to detect ß-human chorionic gonadotropin (ß-hCG), which is extensively used in pregnancy tests and serves as a biomarker for ectopic pregnancy. The sensor used is an electric-double-layer field-effect transistor biosensor with the extended-gate design. Bias voltage is applied on the sensor to measure the resulting drain current signals. Gold electrode surface is functionally activated with an anti-ß-hCG antibody to capture ß-hCG protein. Fluorescence imaging technique is utilized to confirm the surface functionalization. The biosensor demonstrates a dynamically wide range of molecules as detection targets at very low sample concentrations, which shows the potential to detect ectopic pregnancy in very early stages and easily keep track of its periodic changes. It can be produced en masse and does not use additional labels/reagents or pre-processing techniques for the sample. This biosensor can significantly reduce the manufacturing costs and is comparable with the currently available commercial ß-hCG assays. It is suitable for early diagnosis of ectopic pregnancy with low cost and easy operation at home with urine samples.

14.
Antioxidants (Basel) ; 10(1)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451157

RESUMEN

Oxidative stress generated by reactive oxygen species (ROS) plays a critical role in the pathomechanism of glaucoma, which is a multifactorial blinding disease that may cause irreversible damage within human trabecular meshwork cells (HTMCs). It is known that the transforming growth factor-ß (TGF-ß) signaling pathway is an important component of oxidative stress-induced damage related to extracellular matrix (ECM) fibrosis and activates cell antioxidative mechanisms. To elucidate the dual potential roles and regulatory mechanisms of TGF-ß in effects on HTMCs, we established an in vitro oxidative model using hydrogen peroxide (H2O2) and further focused on TGF-ß-related oxidative stress pathways and the related signal transduction. Via a series of cell functional qualitative analyses to detect related protein level alterations and cell fibrosis status, we illustrated the role of TGF-ß1 and TGF-ß2 in oxidative stress-induced injury by shTGF-ß1 and shTGF-ß2 knockdown or added recombinant human TGF-ß1 protein (rhTGF-ß1). The results of protein level showed that p38 MAPK, TGF-ß, and its related SMAD family were activated after H2O2 stimulation. Cell functional assays showed that HTMCs with H2O2 exposure duration had a more irregular actin architecture compared to normal TM cells. Data with rhTGF-ß1 (1 ng/mL) pretreatment reduced the cell apoptosis rate and amount of reactive oxygen species (ROS), while it also enhanced survival. Furthermore, TGF-ß1 and TGF-ß2 in terms of antioxidant signaling were related to the activation of collagen I and laminin, which are fibrosis-response proteins. Succinctly, our study demonstrated that low concentrations of TGF-ß1 (1 ng/mL) preserves HTMCs from free radical-mediated injury by p-p38 MAPK level and p-AKT signaling balance, presenting a signaling transduction mechanism of TGF-ß1 in HTMC oxidative stress-related therapies.

15.
Cell Biochem Funct ; 39(3): 367-379, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33135206

RESUMEN

Lung cancer is one of the leading causes of cancer-related death worldwide. The most common type of lung cancer is non-small cell lung cancer (NSCLC). When NSCLC is detected, patients are typically already in a metastatic stage. Metastasized cancer is a major obstacle of effective treatment and understanding the mechanisms underlying metastasis is critical to treat cancer. Herein, we selected an invasive subpopulation from the human lung cancer cell line A549 using the transwell system and named it as A549-I5. Invasive and migratory activities of this cell line were analysed using wound healing, invasion, and migration assays. In addition, epithelial-mesenchymal transition (EMT) markers, such as Snail 1, Twist, Vimentin, N-cadherin and E-cadherin, were assessed through immunoblotting. In comparison to A549 cells, the invasive A549-I5 lung cancer cells had enhanced invasiveness, motility and EMT marker expression. Proteomic analysis identified 83 significantly differentially expressed proteins in A549-I5 cells. These identified proteins were classified according to their cellular functions and most were involved in cytoskeleton, redox regulation, protein degradation and protein folding. In summary, our results provide potential diagnostic markers and therapeutic candidates for the treatment of NSCLC metastasis. SIGNIFICANCE OF THE STUDY: When NSCLC is detected, most patients are already in a metastatic stage. Herein, we selected an invasive subpopulation from a human lung cancer cell line which had increased EMT markers as well as high wound healing, invasion and migration abilities. Proteomic analysis identified numerous proteins associated with functions in cytoskeleton, redox regulation, protein degradation and protein folding that were differentially expressed in these cells. These results may provide potential diagnostic markers and therapeutic candidates for the treatment of NSCLC metastasis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Células A549 , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Invasividad Neoplásica , Proteínas de Neoplasias/genética
16.
Stem Cell Res ; 49: 102029, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33096384

RESUMEN

Type 1 diabetes (T1D) is characterized by the autoimmune destruction of insulin-producing ß cells. Genetic studies have identified > 60 T1D risk loci that harbor genes with disease-causative alleles. However, determining the biological effects of such loci is often difficult due to limited tissue availability. Disease-specific human induced pluripotent stem cells (hiPSCs) are a valuable resource for modeling T1D pathogenesis. In particular, families with complete disease penetrance offer an opportunity to further dissect T1D risk loci. Here, we describe the generation of three hiPSC lines from a T1D family with sequence variants associated with autoimmunity.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina , Alelos , Autoinmunidad/genética , Diabetes Mellitus Tipo 1/genética , Humanos
17.
J Cell Mol Med ; 24(20): 11883-11902, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32893977

RESUMEN

More than 70% of patients with ovarian cancer are diagnosed in advanced stages. Therefore, it is urgent to identify a promising prognostic marker and understand the mechanism of ovarian cancer metastasis development. By using proteomics approaches, we found that UDP-glucose dehydrogenase (UGDH) was up-regulated in highly metastatic ovarian cancer TOV21G cells, characterized by high invasiveness (TOV21GHI ), in comparison to its parental control. Previous reports demonstrated that UGDH is involved in cell migration, but its specific role in cancer metastasis remains unclear. By performing immunohistochemical staining with tissue microarray, we found overexpression of UGDH in ovarian cancer tissue, but not in normal adjacent tissue. Silencing using RNA interference (RNAi) was utilized to knockdown UGDH, which resulted in a significant decrease in metastatic ability in transwell migration, transwell invasion and wound healing assays. The knockdown of UGDH caused cell cycle arrest in the G0 /G1 phase and induced a massive decrease of tumour formation rate in vivo. Our data showed that UGDH-depletion led to the down-regulation of epithelial-mesenchymal transition (EMT)-related markers as well as MMP2, and inactivation of the ERK/MAPK pathway. In conclusion, we found that the up-regulation of UGDH is related to ovarian cancer metastasis and the deficiency of UGDH leads to the decrease of cell migration, cell invasion, wound healing and cell proliferation ability. Our findings reveal that UGDH can serve as a prognostic marker and that the inhibition of UGDH is a promising strategy for ovarian cancer treatment.


Asunto(s)
Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Uridina Difosfato Glucosa Deshidrogenasa/metabolismo , Actinas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular , Técnicas de Silenciamiento del Gen , Humanos , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Biológicos , Invasividad Neoplásica , Metástasis de la Neoplasia , Polimerizacion , Proteómica , ARN Interferente Pequeño/metabolismo , Cicatrización de Heridas , Ensayos Antitumor por Modelo de Xenoinjerto
18.
J Cell Mol Med ; 24(17): 9737-9751, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32672400

RESUMEN

Cancer metastasis is a common cause of failure in cancer therapy. However, over 60% of oral cancer patients present with advanced stage disease, and the five-year survival rates of these patients decrease from 72.6% to 20% as the stage becomes more advanced. In order to manage oral cancer, identification of metastasis biomarker and mechanism is critical. In this study, we use a pair of oral squamous cell carcinoma lines, OC3, and invasive OC3-I5 as a model system to examine invasive mechanism and to identify potential therapeutic targets. We used two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to examine the global protein expression changes between OC3 and invasive OC3-I5. A proteomic study reveals that invasive properties alter the expression of 101 proteins in OC3-I5 cells comparing to OC3 cells. Further studies have used RNA interference technique to monitor the influence of progesterone receptor membrane component 1 (PGRMC1) protein in invasion and evaluate their potency in regulating invasion and the mechanism it involved. The results demonstrated that expression of epithelial-mesenchymal transition (EMT) markers including Twist, p-Src, Snail1, SIP1, JAM-A, vimentin and vinculin was increased in OC3-I5 compared to OC3 cells, whereas E-cadherin expression was decreased in the OC3-I5 cells. Moreover, in mouse model, PGRMC1 is shown to affect not only migration and invasion but also metastasis in vivo. Taken together, the proteomic approach allows us to identify numerous proteins, including PGRMC1, involved in invasion mechanism. Our results provide useful diagnostic markers and therapeutic candidates for the treatment of oral cancer invasion.


Asunto(s)
Proliferación Celular/genética , Proteínas de la Membrana/genética , Neoplasias de la Boca/genética , Proteínas de Neoplasias/genética , Receptores de Progesterona/genética , Animales , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Xenoinjertos , Humanos , Ratones , Neoplasias de la Boca/patología , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Metástasis de la Neoplasia , Proteómica
19.
J Pharm Biomed Anal ; 186: 113300, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32413824

RESUMEN

Cancer metastasis is the major cause of death in pancreatic cancer. We have established a pair of pancreatic ductal adenocarcinoma cell line, PANC1 and invasive PANC1-I5, as a model system toinvestigate the metastatic mechanism as well as potential therapeutic targets in pancreatic cancer. We used proteomic analysis based on two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to examine the global protein expression alterations between PANC1 and PANC1-I5. Proteomic study revealed that 88 proteins are differentially expressed between PANC1-I5 and PANC1 cells, and further functional evaluations through protein expression validation, gene knockout, migration and invasion analysis revealed that galectin-1 is one of the potential players in modulating pancreatic cancer metastasis. To conclude, we have identified numerous proteins might be associated with pancreatic cancer invasiveness in the pancreatic cancer model.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Galectina 1/metabolismo , Neoplasias Pancreáticas/patología , Proteómica , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Electroforesis Bidimensional Diferencial en Gel
20.
J Control Release ; 321: 159-173, 2020 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-32045622

RESUMEN

Compact nanohybrids can potentially unite various therapeutic features and reduce side effects for precise cancer therapy. However, the poor accumulation and limited tumor penetration of drugs at the tumor impede the manifestation of nanomedicine. We developed a rabies virus glycoprotein (RVG)-amplified hierarchical targeted hybrid that acts as a stealthy and magnetolytic carrier that transports dual tumor-penetrating agents incorporating two drugs (boron-doped graphene quantum dots (B-GQDs)/doxorubicin and pH-responsive dendrimers (pH-Den)/palbociclib). The developed RVG-decorated hybrids (RVG-hybrids) enhance the accumulation of drugs at tumor by partially bypassing the BBB via spinal cord transportation and pH-induced aggregation of hierarchical targeting. The penetrated delivery of dual pH-Den and B-GQD drugs to deep tumors is actuated by magnetoelectric effect, which are able to generate electrons to achieve electrostatic repulsion and disassemble the hybrids into components of a few nanometers in size. The synergy of magnetoelectric drug penetration and chemotherapy was achieved by delivery of the B-GQDs and pH-Den to orthotopic tumors, which prolonged the host survival time. This RVG-amplified dual hierarchical delivery integrated with controlled and penetrated release from this hybrid improve the distribution of the therapeutic agents at the brain tumor for synergistic therapy, exhibiting potential for clinic use.


Asunto(s)
Neoplasias Encefálicas , Grafito , Virus de la Rabia , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Doxorrubicina , Sistemas de Liberación de Medicamentos , Glicoproteínas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...