Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 7(1): 2563, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28566731

RESUMEN

One unique feature of quantum mechanics is the Heisenberg uncertainty principle, which states that the outcomes of two incompatible measurements cannot simultaneously achieve arbitrary precision. In an information-theoretic context of quantum information, the uncertainty principle can be formulated as entropic uncertainty relations with two measurements for a quantum bit (qubit) in two-dimensional system. New entropic uncertainty relations are studied for a higher-dimensional quantum state with multiple measurements, and the uncertainty bounds can be tighter than that expected from two measurements settings and cannot result from qubits system with or without a quantum memory. Here we report the first room-temperature experimental testing of the entropic uncertainty relations with three measurements in a natural three-dimensional solid-state system: the nitrogen-vacancy center in pure diamond. The experimental results confirm the entropic uncertainty relations for multiple measurements. Our result represents a more precise demonstrating of the fundamental uncertainty principle of quantum mechanics.

3.
Nat Commun ; 6: 6726, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25832364

RESUMEN

Precise parameter estimation plays a central role in science and technology. The statistical error in estimation can be decreased by repeating measurement, leading to that the resultant uncertainty of the estimated parameter is proportional to the square root of the number of repetitions in accordance with the central limit theorem. Quantum parameter estimation, an emerging field of quantum technology, aims to use quantum resources to yield higher statistical precision than classical approaches. Here we report the first room-temperature implementation of entanglement-enhanced phase estimation in a solid-state system: the nitrogen-vacancy centre in pure diamond. We demonstrate a super-resolving phase measurement with two entangled qubits of different physical realizations: an nitrogen-vacancy centre electron spin and a proximal (13)C nuclear spin. The experimental data shows clearly the uncertainty reduction when entanglement resource is used, confirming the theoretical expectation. Our results represent an elemental demonstration of enhancement of quantum metrology against classical procedure.

4.
Nanoscale ; 6(17): 10134-9, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25042514

RESUMEN

We experimentally investigate the protection of electron spin coherence of a nitrogen-vacancy (NV) centre in diamond by dynamic nuclear spin polarization (DNP). The electron spin decoherence of an NV centre is caused by the magnetic field fluctuation of the (13)C nuclear spin bath, which contributes large thermal fluctuation to the centre electron spin when it is in an equilibrium state at room temperature. To address this issue, we continuously transfer the angular momentum from electron spin to nuclear spins, and pump the nuclear spin bath to a polarized state under the Hartmann-Hahn condition. The bath polarization effect is verified by the observation of prolongation of the electron spin coherence time (T). Optimal conditions for the DNP process, including the pumping pulse duration and repeat numbers, are proposed by numerical simulation and confirmed by experiment. We also studied the depolarization effect of laser pulses. Our results provide a new route for quantum information processing and quantum simulation using the polarized nuclear spin bath.

5.
Sci Rep ; 3: 1498, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23511233

RESUMEN

In contrast to the classical world, an unknown quantum state cannot be cloned ideally, as stated by the no-cloning theorem. However, it is expected that approximate or probabilistic quantum cloning will be necessary for different applications, and thus various quantum cloning machines have been designed. Phase quantum cloning is of particular interest because it can be used to attack the Bennett-Brassard 1984 (BB84) states used in quantum key distribution for secure communications. Here, we report the first room-temperature implementation of quantum phase cloning with a controllable phase in a solid-state system: the nitrogen-vacancy centre of a nanodiamond. The phase cloner works well for all qubits located on the equator of the Bloch sphere. The phase is controlled and can be measured with high accuracy, and the experimental results are consistent with theoretical expectations. This experiment provides a basis for phase-controllable quantum information devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...