Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 22(10): 1187-1196, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32929202

RESUMEN

Membraneless organelles or condensates form through liquid-liquid phase separation1-4, which is thought to underlie gene transcription through condensation of the large-scale nucleolus5-7 or in smaller assemblies known as transcriptional condensates8-11. Transcriptional condensates have been hypothesized to phase separate at particular genomic loci and locally promote the biomolecular interactions underlying gene expression. However, there have been few quantitative biophysical tests of this model in living cells, and phase separation has not yet been directly linked with dynamic transcriptional outputs12,13. Here, we apply an optogenetic approach to show that FET-family transcriptional regulators exhibit a strong tendency to phase separate within living cells, a process that can drive localized RNA transcription. We find that TAF15 has a unique charge distribution among the FET family members that enhances its interactions with the C-terminal domain of RNA polymerase II. Nascent C-terminal domain clusters at primed genomic loci lower the energetic barrier for nucleation of TAF15 condensates, which in turn further recruit RNA polymerase II to drive transcriptional output. These results suggest that positive feedback between interacting transcriptional components drives localized phase separation to amplify gene expression.


Asunto(s)
Nucléolo Celular/metabolismo , Regulación de la Expresión Génica , Proteínas Intrínsecamente Desordenadas/metabolismo , Orgánulos/metabolismo , ARN Polimerasa II/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Animales , Nucléolo Celular/genética , Citoplasma/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Ratones , Orgánulos/genética , Transición de Fase , ARN Polimerasa II/química , ARN Polimerasa II/genética , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/genética
3.
Cell ; 175(6): 1481-1491.e13, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30500535

RESUMEN

Phase transitions involving biomolecular liquids are a fundamental mechanism underlying intracellular organization. In the cell nucleus, liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is implicated in assembly of the nucleolus, as well as transcriptional clusters, and other nuclear bodies. However, it remains unclear whether and how physical forces associated with nucleation, growth, and wetting of liquid condensates can directly restructure chromatin. Here, we use CasDrop, a novel CRISPR-Cas9-based optogenetic technology, to show that various IDPs phase separate into liquid condensates that mechanically exclude chromatin as they grow and preferentially form in low-density, largely euchromatic regions. A minimal physical model explains how this stiffness sensitivity arises from lower mechanical energy associated with deforming softer genomic regions. Targeted genomic loci can nonetheless be mechanically pulled together through surface tension-driven coalescence. Nuclear condensates may thus function as mechano-active chromatin filters, physically pulling in targeted genomic loci while pushing out non-targeted regions of the neighboring genome. VIDEO ABSTRACT.


Asunto(s)
Nucléolo Celular/metabolismo , Cromatina/metabolismo , Citoplasma/metabolismo , Genoma Humano , Proteínas Intrínsecamente Desordenadas/metabolismo , Transición de Fase , Animales , Línea Celular Tumoral , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Células 3T3 NIH
4.
J Mol Biol ; 429(11): 1733-1745, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28385637

RESUMEN

Protein biogenesis is poorly understood due to the ribosome that perturbs measurement attempted on the ribosome-bound nascent chain (RNC). Investigating nascent chain dynamics may provide invaluable insight into the co-translational processes such as structure formation or interaction with a chaperone [e.g., the bacterial trigger factor (TF)]. In this study, we aim to establish a platform for studying nascent chain dynamics by exploring the local environment near the fluorescent dye on site-specifically labeled RNCs with time-resolved fluorescence anisotropy. To prepare a quantitative model of fluorescence depolarization, we utilized intrinsically disordered protein bound to ribosome, which helped us couple the sub-nanosecond depolarization with the motion of the nascent chain backbone. This was consistent with zinc-finger-domain-containing RNCs, where the extent of sub-nanosecond motion decreased upon the addition of zinc when the fluorophore was in close proximity of the domain. After the characterization of disordered nascent chain dynamics, we investigated the synthesis of a model cytosolic protein, Entner-Doudoroff aldolase, labeled at different sites during various stages of translation. Depending on the stage of translation, the addition of the TF to the nascent chain led to two different responses in the nascent chain dynamics serendipitously, suggesting steric hindrance between the nascent chain and the chaperone as a mechanism for TF dissociation from the ribosome during translation. Overall, our study demonstrates the possible use of site-specific labeling and time-resolved anisotropy to gain insight on chaperone binding event at various stages of translation and hints on TF co-translational mechanism.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Fructosa-Bifosfato Aldolasa/química , Fructosa-Bifosfato Aldolasa/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Biosíntesis de Proteínas , Pliegue de Proteína
5.
Sci Rep ; 5: 14992, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26450664

RESUMEN

The abundant accumulation of inclusion bodies containing polyglutamine-expanded mutant huntingtin (mHTT) aggregates is considered as the key pathological event in Huntington's disease (HD). Here, we demonstrate that FKBP12, an isomerase that exhibits reduced expression in HD, decreases the amyloidogenicity of mHTT, interrupts its oligomerization process, and structurally promotes the formation of amorphous deposits. By combining fluorescence-activated cell sorting with multiple biophysical techniques, we confirm that FKBP12 reduces the amyloid property of these ultrastructural-distinct mHTT aggregates within cells. Moreover, the neuroprotective effect of FKBP12 is demonstrated in both cellular and nematode models. Finally, we show that FKBP12 also inhibit the fibrillization process of other disease-related and aggregation-prone peptides. Our results suggest a novel function of FKBP12 in ameliorating the proteotoxicity in mHTT, which may shed light on unraveling the roles of FKBP12 in different neurodegenerative diseases and developing possible therapeutic strategies.


Asunto(s)
Mutación , Proteínas del Tejido Nervioso/genética , Péptidos/genética , Proteína 1A de Unión a Tacrolimus/genética , Expansión de Repetición de Trinucleótido/genética , Amiloide/química , Amiloide/metabolismo , Amiloide/ultraestructura , Animales , Animales Modificados Genéticamente , Western Blotting , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Agregado de Proteínas/genética , Conformación Proteica , Proteína 1A de Unión a Tacrolimus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...