Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Healthcare (Basel) ; 11(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36981566

RESUMEN

Lungs and kidneys are two vital and frequently injured organs among critically ill patients. In this study, we attempt to develop a weaning prediction model for patients with both respiratory and renal failure using an explainable machine learning (XML) approach. We used the eICU collaborative research database, which contained data from 335 ICUs across the United States. Four ML models, including XGBoost, GBM, AdaBoost, and RF, were used, with weaning prediction and feature windows, both at 48 h. The model's explanations were presented at the domain, feature, and individual levels by leveraging various techniques, including cumulative feature importance, the partial dependence plot (PDP), the Shapley additive explanations (SHAP) plot, and local explanation with the local interpretable model-agnostic explanations (LIME). We enrolled 1789 critically ill ventilated patients requiring hemodialysis, and 42.8% (765/1789) of them were weaned successfully from mechanical ventilation. The accuracies in XGBoost and GBM were better than those in the other models. The discriminative characteristics of six key features used to predict weaning were demonstrated through the application of the SHAP and PDP plots. By utilizing LIME, we were able to provide an explanation of the predicted probabilities and the associated reasoning for successful weaning on an individual level. In conclusion, we used an XML approach to establish a weaning prediction model in critically ill ventilated patients requiring hemodialysis.

2.
ACS Appl Mater Interfaces ; 14(36): 41156-41164, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36037311

RESUMEN

Contact engineering of two-dimensional semiconductors is a central issue for performance improvement of micro-/nanodevices based on these materials. Unfortunately, the various methods proposed to improve the Schottky barrier height normally require the use of high temperatures, chemical dopants, or complex processes. This work demonstrates that diffused electron beam energy (DEBE) treatment can simultaneously reduce the Schottky barrier height and enable the direct writing of electrical circuitry on van der Waals semiconductors. The electron beam energy projected into the region outside the electrode diffuses into the main channel, producing selective-area n-type doping in a layered MoTe2 (or MoS2) field-effect transistor. As a result, the Schottky barrier height at the interface between the electrode and the DEBE-treated MoTe2 channel is as low as 12 meV. Additionally, because selective-area doping is possible, DEBE can allow the formation of both n- and p-type doped channels within the same atomic plane, which enables the creation of a nonvolatile and homogeneous MoTe2 p-n rectifier with an ideality factor of 1.1 and a rectification ratio of 1.3 × 103. These results indicate that the DEBE method is a simple, efficient, mask-free, and chemical dopant-free approach to selective-area doping for the development of van der Waals electronics with excellent device performances.

3.
Adv Sci (Weinh) ; 9(24): e2106016, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35831244

RESUMEN

Van der Waals (vdW) heterostructures-in which layered materials are purposely selected to assemble with each other-allow unusual properties and different phenomena to be combined and multifunctional electronics to be created, opening a new chapter for the spread of internet-of-things applications. Here, an O2 -ultrasensitive MoTe2 material and an O2 -insensitive SnS2 material are integrated to form a vdW heterostructure, allowing the realization of charge-polarity control for multioperation-mode transistors through a simple and effective rapid thermal annealing strategy under dry-air and vacuum conditions. The charge-polarity control (i.e., doping and de-doping processes), which arises owing to the interaction between O2 adsorption/desorption and tellurium defects at the MoTe2 surface, means that the MoTe2 /SnS2 heterostructure transistors can reversibly change between unipolar, ambipolar, and anti-ambipolar transfer characteristics. Based on the dynamic control of the charge-polarity properties, an inverter, output polarity controllable amplifier, p-n diode, and ternary-state logics (NMIN and NMAX gates) are demonstrated, which inspire the development of reversibly multifunctional devices and indicates the potential of 2D materials.

4.
ACS Appl Mater Interfaces ; 12(38): 42918-42924, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32864950

RESUMEN

Flexible manipulation of the carrier transport behaviors in two-dimensional materials determines their values of practical application in logic circuits. Here, we demonstrated the carrier-type manipulation in field-effect transistors (FETs) containing α-phase molybdenum ditelluride (MoTe2) by a rapid thermal annealing (RTA) process in dry air for hole-dominated and electron-beam (EB) treatment for electron-dominated FETs. EB treatment induced a distinct shift of the transfer curve by around 135 V compared with that of the FET-processed RTA treatment, indicating that the carrier density of the EB-treated FET was enhanced by about 1 order of magnitude. X-ray photoelectron spectroscopy analysis revealed that the atomic ratio of Te decreased from 66.4 to 60.8% in the MoTe2 channel after EB treatment. The Fermi level is pinned near the new energy level resulting from the Te vacancies produced by the EB process, leading to the electron-dominant effect of the MoTe2 FET. The electron-dominated MoTe2 FET showed excellent stability for more than 700 days. Thus, we not only realized the reversible modulation of carrier-type in layered MoTe2 FETs but also demonstrated MoTe2 channels with desirable performance, including long-term stability.

5.
Nat Commun ; 11(1): 2972, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32532980

RESUMEN

Exploitation of the oxidation behaviour in an environmentally sensitive semiconductor is significant to modulate its electronic properties and develop unique applications. Here, we demonstrate a native oxidation-inspired InSe field-effect transistor as an artificial synapse in device level that benefits from the boosted charge trapping under ambient conditions. A thin InOx layer is confirmed under the InSe channel, which can serve as an effective charge trapping layer for information storage. The dynamic characteristic measurement is further performed to reveal the corresponding uniform charge trapping and releasing process, which coincides with its surface-effect-governed carrier fluctuations. As a result, the oxide-decorated InSe device exhibits nonvolatile memory characteristics with flexible programming/erasing operations. Furthermore, an InSe-based artificial synapse is implemented to emulate the essential synaptic functions. The pattern recognition capability of the designed artificial neural network is believed to provide an excellent paradigm for ultra-sensitive van der Waals materials to develop electric-modulated neuromorphic computation architectures.

6.
Sci Rep ; 9(1): 20087, 2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882987

RESUMEN

In the present study, we aim to help improve the design of van der Waals stacking, i.e., vertical 2D electronics, by probing charge transport differences in both parallel and vertical conducting channels of layered molybdenum disulfide (MoS2), with thin graphite acting as source and drain electrodes. To avoid systematic errors and variable contact contributions to the MoS2 channel, parallel and vertical electronics are all fabricated and measured on the same conducting material. Large differences in the on/off current ratio, mobility, and charge fluctuations, between parallel and vertical electronics are evident in electrical performance as well as in charge transport mechanisms. Further insights are drawn from a well-constrained analysis of both temperature-dependent current-voltage characteristics and low-frequency (LF) current fluctuations. This work offers significant insight into the fundamental understanding of charge transport and the development of future layered-materials-based integration technology.

7.
ACS Appl Mater Interfaces ; 11(50): 47047-47053, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31746187

RESUMEN

The oxygen (O2)-dependent resistance change of multilayered molybdenum ditelluride (MoTe2) channels was characterized. A variation of the channel resistance could reproducibly determine relative O2 content (denoted as the O2 index). We found that Joule heating in a layered MoTe2 field-effect transistor caused the O2 index to decrease drastically from 100 to 12.1% in back gate modulation. Furthermore, Joule heating caused effective O2 desorption from the MoTe2 surface and repeatable O2 detection by multilayered MoTe2 channels was realized. This work not only explored the influence of O2 on the electrical properties of multilayered MoTe2 channels but also revealed that MoTe2 channels are promising for sensing O2 in an environmental condition.

8.
Small ; 15(33): e1900865, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31264786

RESUMEN

Electrical contacts often dominate charge transport properties at the nanoscale because of considerable differences in nanoelectronic device interfaces arising from unique geometric and electrostatic features. Transistors with a tunable Schottky barrier between the metal and semiconductor interface might simplify circuit design. Here, germanium nanowire (Ge NW) transistors with Cu3 Ge as source/drain contacts formed by both buffered oxide etching treatments and rapid thermal annealing are reported. The transistors based on this Cu3 Ge/Ge/Cu3 Ge heterostructure show ambipolar transistor behavior with a large on/off current ratio of more than 105 and 103 for the hole and electron regimes at room temperature, respectively. Investigations of temperature-dependent transport properties and low-frequency current fluctuations reveal that the tunable effective Schottky barriers of the Ge NW transistors accounted for the ambipolar behaviors. It is further shown that this ambipolarity can be used to realize binary-signal and data-storage functions, which greatly simplify circuit design compared with conventional technologies.

9.
Nanotechnology ; 30(10): 105201, 2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30530943

RESUMEN

Power dissipation is a crucial problem as the packing density of transistors increases in modern integrated circuits. Tunnel field-effect transistors (TFETs), which have high energy filtering provided by band-to-band tunneling (BTBT), have been proposed as an alternative electronics architecture to decrease the energy loss in bias operation and to achieve steep switching at room temperature. Very recently, the BTBT behavior has been demonstrated in van der Waals heterostructures by using unintentionally doped semiconductors. The reason of the BTBT formation is attributed to a significant band bending near the heterointerface, resulting in carrier accumulations. In this work, to investigate charge transport in type-III transistors, we adopted the same band-bending concept to fabricate van der Waals BP/MoS2 heterostructures. Through analyzing the temperature dependence of their electrical properties, we carefully ruled out the contribution of metal-semiconductor contact resistances and improved our understanding of carrier injection in 2D type-III transistors. The BP/MoS2 heterostructures showed both negative differential resistance and 1/f 2 current fluctuations, strongly demonstrating the BTBT operation. Finally, we also designed a TFET based on this heterostructure with an ionic liquid gate, and this TFET demonstrated an subthreshold slope can successfully surmount the thermal limit of 60 mV/decade. This work improves our understanding of charge transport in such layered heterostructures and helps to improve the energy efficiency of next-generation nanoscale electronics.

10.
Adv Mater ; 30(44): e1803690, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30589465

RESUMEN

Tunability and stability in the electrical properties of 2D semiconductors pave the way for their practical applications in logic devices. A robust layered indium selenide (InSe) field-effect transistor (FET) with superior controlled stability is demonstrated by depositing an indium (In) doping layer. The optimized InSe FETs deliver an unprecedented high electron mobility up to 3700 cm2 V-1 s-1 at room temperature, which can be retained with 60% after 1 month. Further insight into the evolution of the position of the Fermi level and the microscopic device structure with different In thicknesses demonstrates an enhanced electron-doping behavior at the In/InSe interface. Furthermore, the contact resistance is also improved through the In insertion between InSe and Au electrodes, which coincides with the analysis of the low-frequency noise. The carrier fluctuation is attributed to the dominance of the phonon scattering events, which agrees with the observation of the temperature-dependent mobility. Finally, the flexible functionalities of the logic-circuit applications, for instance, inverter and not-and (NAND)/not-or (NOR) gates, are determined with these surface-doping InSe FETs, which establish a paradigm for 2D-based materials to overcome the bottleneck in the development of electronic devices.

11.
Adv Mater ; 30(13): e1706995, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29430746

RESUMEN

Precisely controllable and reversible p/n-type electronic doping of molybdenum ditelluride (MoTe2 ) transistors is achieved by electrothermal doping (E-doping) processes. E-doping includes electrothermal annealing induced by an electric field in a vacuum chamber, which results in electron (n-type) doping and exposure to air, which induces hole (p-type) doping. The doping arises from the interaction between oxygen molecules or water vapor and defects of tellurium at the MoTe2 surface, and allows the accurate manipulation of p/n-type electrical doping of MoTe2 transistors. Because no dopant or special gas is used in the E-doping processes of MoTe2 , E-doping is a simple and efficient method. Moreover, through exact manipulation of p/n-type doping of MoTe2 transistors, quasi-complementary metal oxide semiconductor adaptive logic circuits, such as an inverter, not or gate, and not and gate, are successfully fabricated. The simple method, E-doping, adopted in obtaining p/n-type doping of MoTe2 transistors undoubtedly has provided an approach to create the electronic devices with desired performance.

12.
Waste Manag ; 66: 53-60, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28487174

RESUMEN

In the study, the biogas digestate was evaluated as a potential feedstock for preparing biochars at a broad temperature range of 300-900°C. The physico-chemical and pore properties of the resulting biochars (denoted as SDBC, solid digestate biochar), including calorific value (higher heating value), surface area/pore volume/pore size distribution, true density, scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD), were studied. It was found that the higher heating values of the SDBC products were on a decreasing trend as pyrolysis temperature increased, but they indicated an increase in true density. The results are probably associated with the active pyrolysis of the lignocellulosic fragments and the calcination (or shrinkage) processes, thus resulting in the increased contents of aromatic carbon clusters and main mineral constituents remained. Based on the pore properties, pyrolysis temperature at around 800°C seemed to be the optimal condition for producing SDBC, where its Brunauer-Emmet-Teller (BET) surface area (>100m2/g) largely increased as compared to that of the digestate feedstock (<1m2/g). Furthermore, the main compositions of mineral ash in the resulting biochar could exist as phosphates, carbonates, or oxides of calcium and other alkali/alkaline earth elements. According to the data on EDS and XRD, more pores could be significantly generated under severe pyrolysis (>700°C) due to the high aromaticity via the thermal decomposition of lignocelluloses and the volatilization of inorganic minerals.


Asunto(s)
Biocombustibles , Carbón Orgánico , Temperatura , Difracción de Rayos X
13.
ACS Appl Mater Interfaces ; 9(13): 11985-11992, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28301136

RESUMEN

The photoluminescence (PL) and reflectivity characteristics of zinc oxide nanopillars (ZnO-NPs) grown on indium-tin-oxide (ITO)-coated glasses were investigated. The room temperature PL showed bright white-light emission for the undoped ZnO-NPs grown at 600 °C, suggesting the close relation between the optical characteristic and the growth conditions being carried out for obtaining the present ZnO-NPs. The reflectivity of the as-grown ZnO-NPs array was about ∼29% with the wavelength of the incident light ranging from 200 to 1800 nm. Nevertheless, the reflectance reduced significantly to less than 9.9% when a layer of gold (Au) was deposited on ZnO-NPs by sputtering for 5 min, corresponding to more than 65% reduction in Au-coated ZnO-NPs (Au/ZnO-NPs). Moreover, the angle-resolved reflectance measurements on the present Au/ZnO-NPs array show an omnidirectional light-trapping characteristic. These remarkable characteristics, broadband and omnidirectional light-trapping of Au/ZnO-NPs, are attributed to the extended effective optical path of the incident light due to subwavelength scattering resulting from the presence of Au nanoparticles.

14.
Micromachines (Basel) ; 8(11)2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-30400528

RESUMEN

In recent years, dielectric elastomer actuators (DEAs) have been widely used in soft robots and artificial bio-medical applications. Most DEAs are composed of a thin dielectric elastomer layer sandwiched between two compliant electrodes. DEAs vary in their design to provide bending, torsional, and stretch/contraction motions under the application of high external voltages. Most compliant electrodes are made of carbon powders or thin metallic films. In situations involving large deformations or improper fabrication, the electrodes are susceptible to breakage and increased resistivity. The worst cases result in a loss of conductivity and functional failure. In this study, we developed a method by which to exploit stretchable metallic springs as compliant electrodes for cylindrical DEAs. This design was inspired by the extensibility of mechanical springs. The main advantage of this approach is the fact that the metallic spring-like compliant electrodes remain conductive and do not increase the stiffness as the tube-like DEAs elongate in the axial direction. This can be attributed to a reduction in thickness in the radial direction. The proposed cylindrical structure is composed of highly-stretchable VHB 4905 film folded within a hollow tube and then sandwiched between copper springs (inside and outside) to allow for stretching and contraction in the axial direction under the application of high DC voltages. We fabricated a prototype and evaluated the mechanical and electromechanical properties of the device experimentally using a high-voltage source of 9.9 kV. This device demonstrated a non-linear increase in axial stretching with an increase in applied voltage, reaching a maximum extension of 0.63 mm (axial strain of 2.35%) at applied voltage of 9.9 kV. Further miniaturization and the incorporation of compressive springs are expected to allow the implementation of the proposed method in soft micro-robots and bio-mimetic applications.

15.
Bioresour Technol ; 184: 344-348, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25451779

RESUMEN

The chlorella-based microalgal residue (AR) was tested as a novel precursor for preparing activated carbons. A combined carbonization-activation process with flowing N2 and CO2 gases was used to prepare the carbon materials at the activation temperatures of 800-1000 °C and the residence times of 0-30 min in this work. The elemental contents, pore properties and scanning electron microscopy (SEM) observations of the resulting activated carbons have been performed. The results showed that activation temperature may be the most important parameter for determining their pore properties. The maximal Brunauer-Emmett-Teller (BET) surface area and total pore volume of the resulting activated carbon, which was produced at the activation temperature of 950 °C with the residence time of 30 min, were 840 m(2)/g and 0.46 cm(3)/g, respectively. More interestingly, the resulting activated carbons have significant nitrogen contents of 3.6-9.6 wt%, which make them lower carbon contents (i.e., 54.6-68.4 wt%) than those of commercial activated carbons.


Asunto(s)
Carbón Orgánico/metabolismo , Chlorella/metabolismo , Microscopía Electrónica de Rastreo , Nitrógeno/química , Porosidad , Temperatura
16.
Nanoscale ; 6(16): 9846-51, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25029029

RESUMEN

Broadband antireflection and field emission characteristics of silicon nanopillars (Si-NPs) fabricated by self-masking dry etching in hydrogen-containing plasma were systematically investigated. In particular, the effects of ultrathin (5-20 nm) titanium nitride (TiN) films deposited on Si-NPs by atomic layer deposition (ALD) on the optoelectronic properties were explored. The results showed that by coating the Si-NPs with a thin layer of TiN the antireflection capability of pristine Si-NPs can be significantly improved, especially in the wavelength range of 1000-1500 nm. The enhanced field emission characteristics of these TiN/Si-NP heterostructures suggest that, in addition to the reflectance suppression in the long wavelength range arising from the strong wavelength-dependent refractive index of TiN, the TiN-coating may have also significantly modified the effective work function at the TiN/Si interface as well.

17.
Nanoscale Res Lett ; 8(1): 340, 2013 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-23899050

RESUMEN

In this study, a high-performance TixZrySizO flash memory is demonstrated using a sol-gel spin-coating method and formed under a low annealing temperature. The high-efficiency charge storage layer is formed by depositing a well-mixed solution of titanium tetrachloride, silicon tetrachloride, and zirconium tetrachloride, followed by 60 s of annealing at 600°C. The flash memory exhibits a noteworthy hot hole trapping characteristic and excellent electrical properties regarding memory window, program/erase speeds, and charge retention. At only 6-V operation, the program/erase speeds can be as fast as 120:5.2 µs with a 2-V shift, and the memory window can be up to 8 V. The retention times are extrapolated to 106 s with only 5% (at 85°C) and 10% (at 125°C) charge loss. The barrier height of the TixZrySizO film is demonstrated to be 1.15 eV for hole trapping, through the extraction of the Poole-Frenkel current. The excellent performance of the memory is attributed to high trapping sites of the low-temperature-annealed, high-κ sol-gel film.

18.
Phys Chem Chem Phys ; 15(26): 10761-6, 2013 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-23689603

RESUMEN

Metallic gold (Au) and platinum (Pt) thin films were deposited on silicon nanocones (Si-NCs) by sputtering to elucidate the effects of work function and conductivities on the field electron emission characteristics of surface-modified Si-NCs. The results showed that for Pt/Si-NCs and Au/Si-NCs, although the turn-on field defined at a corresponding current density of 10 µA cm(-2) only improved from 4.20 V µm(-1) for bare Si-NCs to 3.65 and 2.90 V µm(-1), respectively, the emission current density measured at 5.00 V µm(-1) was enhanced by orders of magnitude, reaching 1.82 mA cm(-2) for Au/Si-NCs. Compared to those obtained from various surface-modified Si-nanostructures, such as ZnO/Si-nanopillars and ferroelectrics/Si-nanotips, the current results represent an interesting alternative route for producing surface-modified Si-NCs that might be useful for optical and electronic applications.


Asunto(s)
Nanoestructuras/química , Silicio/química , Oro/química , Platino (Metal)/química , Semiconductores , Propiedades de Superficie , Temperatura , Óxido de Zinc/química
19.
Biomol NMR Assign ; 7(2): 211-4, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22825890

RESUMEN

The S100 family belongs to the EF-hand calcium-binding proteins regulating a wide range of important cellular processes via protein-protein interactions. Most S100 proteins adopt a conformation of non-covalent homodimer for their functions. Calcium binding to the EF-hand motifs of S100 proteins is essential for triggering the structural changes, promoting exposure of hydrophobic regions necessary for target protein interactions. S100A11 is a protein found in diverse tissues and possesses multiple functions upon binding to different target proteins. RAGE is a multiligand receptor binding to S100A11 and the interactions at molecular level have not been reported. However, the three-dimensional structure of human S100A11 containing 105 amino acids is still not available for further interaction studies. To determine the solution structure, for the first time we report the (1)H, (15)N and (13)C resonance assignments and protein secondary structure prediction of human S100A11 dimer in complex with calcium using a variety of triple resonance NMR experiments and the chemical shift index (CSI) method, respectively.


Asunto(s)
Proteínas de Unión al Calcio/química , Calcio/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas S100/química , Humanos
20.
ACS Appl Mater Interfaces ; 4(12): 6676-82, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23148729

RESUMEN

The structural and optoelectronic properties of ZnO nanopillars (ZnO-NPs) grown on Si substrates by the vapor transport deposition method were investigated. In particular, by varying the deposition duration and hence the morphology of the vertically aligned ZnO-NPs, the resultant field emission characteristics were systematically compared. In addition to identifying the advantageous field emission properties exhibited in the pencil-like ZnO-NPs, we observed that by adhering Au nanoparticles on the surface of the ZnO-NPs the turn-on field and the maximum current density can be drastically improved from 3.15 V/µm and 0.44 mA/cm(2) at 5 V/µm for the best ZnO-NPs to 2.65 V/µm and 2.11 mA/cm(2) at 5 V/µm for Au/ZnO-NPs, respectively. The enhancement of field emission characteristics that resulted from Au-nanoparticle decoration is discussed on the basis of charge-transfer-induced band structure modifications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...