Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 23(12): e55478, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36278510

RESUMEN

Tissue stem cells (SCs) divide infrequently as a protective mechanism against internal and external stresses associated with aging. Here, we demonstrate that slow- and fast-cycling SCs in the mouse skin epidermis undergo distinct aging processes. Two years of lineage tracing reveals that Dlx1+ slow-cycling clones expand into the fast-cycling SC territory, while the number of Slc1a3+ fast-cycling clones gradually declines. Transcriptome analysis further indicate that the molecular properties of each SC population are altered with age. Mice lacking fibulin 7, an extracellular matrix (ECM) protein, show early impairments resembling epidermal SC aging, such as the loss of fast-cycling clones, delayed wound healing, and increased expression of inflammation- and differentiation-related genes. Fibulin 7 interacts with structural ECM and matricellular proteins, and the overexpression of fibulin 7 in primary keratinocytes results in slower proliferation and suppresses differentiation. These results suggest that fibulin 7 plays a crucial role in maintaining tissue resilience and epidermal SC heterogeneity during skin aging.


Asunto(s)
Proteínas de Unión al Calcio , Envejecimiento de la Piel , Animales , Ratones , Matriz Extracelular , Envejecimiento de la Piel/genética , Células Madre
2.
Front Mol Neurosci ; 14: 815808, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095417

RESUMEN

In adult hippocampal neurogenesis, chromatin modification plays an important role in neural stem cell self-renewal and differentiation by regulating the expression of multiple genes. Histone deacetylases (HDACs), which remove acetyl groups from histones, create a non-permissive chromatin that prevents transcription of genes involved in adult neurogenesis. HDAC inhibitors have been shown to promote adult neurogenesis and have also been used to treat nervous system disorders, such as epilepsy. However, most HDAC inhibitors are not specific and may have other targets. Therefore, it is important to decipher the role of individual HDACs in adult hippocampal neurogenesis. HDACs 1, 2, and 3 have been found expressed at different cellular stages during neurogenesis. Conditional deletion of HDAC2 in neural stem cells impairs neuronal differentiation in adult hippocampus. HDAC3 supports proliferation of adult hippocampal neural stem/progenitor cells. The role of HDAC1 in adult neurogenesis remains still open. Here, we used a conditional knock-out mouse to block HDAC1 expression in neural stem cells (Nestin+ cells) during hippocampal neurogenesis. Our results showed that both HDAC1 and HDAC2 are expressed in all cellular stages during hippocampal neurogenesis. Moreover, we found that deletion of HDAC1 by viral infection of neural stem cells is sufficient to compromise neuronal differentiation in vitro. However, we were unable to reduce the expression of HDAC1 in vivo using Nestin-CreERT2 mice. Understanding the role of HDAC1 may lead to ways to control stem cell proliferation and neuronal regeneration in the adult hippocampus, and to more specific HDAC therapeutics for neurological disorders.

3.
Aging Cell ; 19(8): e13190, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32681764

RESUMEN

Aging in the epidermis is marked by a gradual decline in barrier function, impaired wound healing, hair loss, and an increased risk of cancer. This could be due to age-related changes in the properties of epidermal stem cells and defective interactions with their microenvironment. Currently, no biochemical tools are available to detect and evaluate the aging of epidermal stem cells. The cellular glycosylation is involved in cell-cell communications and cell-matrix adhesions in various physiological and pathological conditions. Here, we explored the changes of glycans in epidermal stem cells as a potential biomarker of aging. Using lectin microarray, we performed a comprehensive glycan profiling of freshly isolated epidermal stem cells from young and old mouse skin. Epidermal stem cells exhibited a significant difference in glycan profiles between young and old mice. In particular, the binding of a mannose-binder rHeltuba was decreased in old epidermal stem cells, whereas that of an α2-3Sia-binder rGal8N increased. These glycan changes were accompanied by upregulation of sialyltransferase, St3gal2 and St6gal1 and mannosidase Man1a genes in old epidermal stem cells. The modification of cell surface glycans by overexpressing these glycogenes leads to a defect in the regenerative ability of epidermal stem cells in culture. Hence, our study suggests the age-related global alterations in cellular glycosylation patterns and its potential contribution to the stem cell function. These glycan modifications detected by lectins may serve as molecular markers for aging, and further functional studies will lead us to a better understanding of the process of skin aging.


Asunto(s)
Lectinas/metabolismo , Polisacáridos/metabolismo , Envejecimiento , Animales , Femenino , Glicosilación , Humanos , Masculino , Ratones , Análisis por Micromatrices , Células Madre/metabolismo
4.
PLoS One ; 14(5): e0215908, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31091266

RESUMEN

Delayed wound healing and reduced barrier function with an increased risk of cancer are characteristics of aged skin and one possible mechanism is misregulation or dysfunction of epidermal stem cells during aging. Recent studies have identified heterogeneous stem cell populations within the mouse interfollicular epidermis that are defined by territorial distribution and cell division frequency; however, it is unknown whether the individual stem cell populations undergo distinct aging processes. Here we provide comprehensive characterization of age-related changes in the mouse epidermis within the specific territories of slow-cycling and fast-dividing stem cells using old wild-type, senescence-accelerated mouse prone 1 (SAMP1) and SAMP8 mice. During aging, the epidermis exhibits structural changes such as irregular micro-undulations and overall thinning of the tissue. We also find that, in the old epidermis, proliferation is preferentially decreased in the region where fast-dividing stem cells reside whereas the lineage differentiation marker appears to be more affected in the slow-cycling stem cell region. Furthermore, SAMP8, but not SAMP1, exhibits precocious aging similar to that of aged wild-type mice, suggesting a potential use of this model for aging study of the epidermis and its stem cells. Taken together, our study reveals distinct aging processes governing the two epidermal stem cell populations and suggests a potential mechanism in differential responses of compartmentalized stem cells and their niches to aging.


Asunto(s)
Epidermis/metabolismo , Células Madre/citología , Animales , Diferenciación Celular , División Celular , Proliferación Celular , Senescencia Celular , Ratones , Especificidad de la Especie
5.
Mol Brain ; 9: 2, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26745987

RESUMEN

BACKGROUND: The conditions under which memory generalization occurs are not well understood. Although it is believed that fear memory generalization is gradually established after learning, it is not clear whether experiences soon after learning affect generalization. RESULTS: Using a contextual fear conditioning paradigm in mice, we found that fear memory generalization occurred when mice were exposed to a familiar, unconditioned context soon after fear learning. CONCLUSIONS: Our results suggest that the familiarity of contexts and the timing of their exposure influences memory generalization, which increases our understanding of the mechanisms of generalization.


Asunto(s)
Miedo/fisiología , Generalización de la Respuesta/fisiología , Memoria/fisiología , Animales , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...