Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 14(7): 3686-3702, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29894196

RESUMEN

In this study, a detailed calibration of the performance of modern ab initio wave function methods in the domain of X-ray absorption spectroscopy (XAS) is presented. It has been known for some time that for a given level of approximation, for example, using time-dependent density functional theory (TD-DFT) in conjunction with a given basis set, there are systematic deviations of the calculated transition energies from their experimental values that depend on the functional, the basis set, and the chosen treatment of scalar relativistic effects. This necessitates a linear correlation for a given element/functional/basis set combination to be established before chemical applications can be performed. This is a laborious undertaking since it involves sourcing trustworthy experimental data, lengthy geometry optimizations, and detailed comparisons between theory and experiment. In this work, reference values for the element-specific shifts of all the first-row transition metal atoms and the main group elements C, N, O, F, Si, P, S, and Cl have been computed by using a protocol that is based on the complete active space configuration interaction in conjunction with second-order N-electron valence state perturbation theory (CASCI/NEVPT2). It is shown that by extrapolating the results to the basis set limit of the method and taking into account scalar relativistic effects via the second-order Douglas-Kroll-Hess (DKH2) corrections, the predicted element shifts are on average less than 0.75 eV across all the absorption edges and a very good agreement between theory and experiment in all the studied XAS cases is observed. The transferability of these errors to molecular systems is thoroughly investigated. The constructed CASCI/NEVPT2 database of element shifts is used to evaluate the performance and to automatically calibrate prior to comparison with the experiment two commonly used methods in X-ray spectroscopy, namely, DFT/Restricted open shell configuration interaction singles (DFT/ROCIS) and TD-DFT methods.

2.
Chem Commun (Camb) ; 51(37): 7805-8, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25858789

RESUMEN

An unprecedented DTE-based Pt(II) complex, 2(o), which stands as the first example of a sequential double nonlinear optical switch, induced first by protonation and next upon irradiation with UV light is presented.

3.
J Phys Chem B ; 119(7): 3174-84, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25629649

RESUMEN

For about 300 solvents, we propose a database of new solvent parameters describing empirically solute/solvent interactions: DI for dispersion and induction, ES for electrostatic interactions between permanent multipoles, α1 for solute Lewis base/solvent Lewis acid interactions, and ß1 for solute hydrogen-bond donor/solvent hydrogen-bond acceptor interactions. The main advantage over previous parametrizations is the easiness of extension of this database to newly designed solvents, since only three probes, the betaine dye 30, 4-fluorophenol, and 4-fluoroanisole are required. These parameters can be entered into the linear solvation energy relationship A = A0 + di(DI) + eES + aα1 + bß1 to predict a large number of varied physicochemical properties A and to rationalize the multiple intermolecular forces at the origin of solvent effects through a simple examination of the sign and magnitude of regression coefficients di, e, a, and b. Such a rationalization is illustrated for conformational and tautomeric equilibria and is supported by quantum-mechanical calculations.

4.
Chemistry ; 20(32): 10073-83, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-25043565

RESUMEN

A series of terarylenes incorporating benzothiophene (BT)/benzofuran (BF) as the central ethene unit was synthesised by using sequential Pd-catalysed C-H activation reactions. This new methodology allows the easy modification of the nature of the pendant heteroarene groups. Diaryl ethene (DAE) derivatives with thiophene, thiazole, pyrrole, isoxazole and pyrazole rings were prepared. A large number of asymmetrical DAEs are easily accessible by this new method in both the BT and BF series. The study of their photochromic properties in solution revealed that the nature of the heteroarene and of the central unit drastically modify their photochromic behaviour. TD-DFT calculations were performed to assess the nature of the relevant excited states.

5.
J Phys Chem B ; 118(27): 7594-7608, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-24919118

RESUMEN

The hydrogen-bond-acceptor basicity of an important class of solvents, the amphiprotic solvents (water, alcohols, primary and secondary amides, and carboxylic acids), has not yet been properly parametrized. In this work, the first scale of solvent hydrogen-bond basicity applicable to amphiprotic solvents is established by means of a new method that compares the 19F NMR chemical shifts of 4-fluorophenol and 4-fluoroanisole in hydrogen-bond-acceptor solvents. This so-called solvatomagnetic comparison method is free of the shortcomings of the solvatochromic comparison method used so far and is easier to carry out than the pure base calorimetric method. The validity of the new scale is assessed by good linear correlations with spectroscopic, thermodynamic, and kinetic solute properties depending on the solvent hydrogen-bond basicity. In such correlation analysis of solvent effects on physicochemical properties, solvent and solute hydrogen-bond basicity scales must not be mixed, since it is shown here that solute and solvent scales are not equivalent. A comprehensive collection of parameters quantifying the hydrogen-bond basicity is presented for 168 solvents.

6.
J Mol Model ; 20(3): 2082, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24562852

RESUMEN

The synthesis of a new Ru(II) complex is reported. Its absorption spectrum when interacting with DNA in water was calculated at the hybrid quantum mechanics molecular mechanics level of theory and compared with experimental data. The vertical transitions were computed using time-dependent density functional theory in the linear response approximation. The complex and its environment were treated at the quantum mechanical and molecular mechanical levels, respectively. The effects of the environment were investigated in detail and conveniently classified into electrostatic and polarization effects. The latter were modeled using the computationally inexpensive "electronic response of the surroundings" method. It was found that the main features of the experimental spectrum are nicely reproduced by the theoretical calculations. Moreover, analysis of the most intense transitions utilizing the natural transition orbital formalism revealed important insights into their nature and their potential role in the irreversible oxidation of DNA, a phenomenon that could be relevant in the field of cancer therapy.


Asunto(s)
Complejos de Coordinación/química , ADN Forma B/química , Simulación de Dinámica Molecular , Compuestos Organometálicos/química , Rutenio/química , Espectrofotometría/métodos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/metabolismo , ADN Forma B/metabolismo , Sustancias Intercalantes/química , Sustancias Intercalantes/metabolismo , Modelos Químicos , Estructura Molecular , Conformación de Ácido Nucleico , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/metabolismo , Teoría Cuántica , Electricidad Estática , Agua/química
7.
J Chem Theory Comput ; 10(9): 3944-57, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26588538

RESUMEN

This contribution is an investigation of both the structures and optical properties of a set of 14 diverse, recently synthesized diarylethenes using Time-Dependent Density Functional Theory (TD-DFT) at the ωB97X-D/6-31G(d) level of theory. The linear response (LR) and state-specific (SS) versions of the Polarizable Continuum Model (PCM) have been adopted to account for the bulk solvation effects and their relative performances were critically accessed. It is shown, for the first time in the case of nontrivial diarylethenes, that TD-DFT provides good agreement between the experimental absorption-fluorescence crossing points (AFCPs) and their theoretical counterparts when a robust model accounting for both geometrical relaxation and vibrational corrections is used instead of the vertical approximation. On the other hand, the theoretical estimates for the Stokes shifts based on the vertical transition energies were found to be in disagreement with respect to experiment, prompting us to simulate the absorption/emission vibronic band shapes. It is proved that difficulties associated with the breakdown of the harmonic approximation in Cartesian coordinates exist for the investigated system, and we show how they can be at least partially overcome by means of a vertical approach including Duschinsky effects. Our results provide a valuable basis to rationalize the experimental vibronic structure of both emission and absorption bands and are expected to be a significant asset to the understanding of the optical properties of diarylethene derivatives.

8.
J Chem Theory Comput ; 9(10): 4517-25, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26589168

RESUMEN

The reliability of the Tamm-Dancoff approximation (TDA) for predicting vibrationally resolved absorption and emission spectra of several prototypical conjugated molecules has been addressed by performing a series of extensive theoretical calculations. To this end, we have systematically compared the TDA results with the full Time-Dependent Density Functional Theory (TDDFT), the Random Phase Approximation (RPA), as well as the Configuration Interaction Singles (CIS) methods that are routinely employed for the prediction of optical spectra of large molecules. Comparisons have been made with experimental results for both the band shapes and 0-0 energies. They revealed that TDA is generally able to reproduce the experimental band shapes along with the positions of the absorption and emission peaks. With respect to TDDFT, TDA leads to an underestimation of the relative intensities for most cases but does not alter any other feature of the spectra. For the case of 0-0 energies, it leads to a better agreement between theory and experiment compared to TDDFT for the majority of the molecules studied, at least when combined with the popular B3LYP functional.

9.
J Chem Theory Comput ; 8(5): 1536-41, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-26593648

RESUMEN

The UV/vis and circular-dichroism spectra of a bis-bipyridinyl ruthenium complex are computed at the density functional theory level and the time dependent density functional level of theory. The effects of the solvent, here water, have been taken into account, by polarizable continuum methods and by a hybrid quantum-mechanics/molecular-mechanics approach combined with molecular dynamics. The effects of the solvent have been decomposed in geometric, electrostatic, and polarization of the environment. The principal transitions have been analyzed by means of natural transition orbitals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...