Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2307275, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38050946

RESUMEN

The successful utilization of silicon nanoparticles (Si-NPs) to enhance the performance of Li-ion batteries (LIBs) has demonstrated their potential as high-capacity anode materials for next-generation LIBs. Additionally, the availability and relatively low cost of sodium resources have a significant influence on developing Na-ion batteries (SIBs). Despite the unique properties of Si-NPs as SIBs anode material, limited study has been conducted on their application in these batteries. However, the knowledge gained from using Si-NPs in LIBs can be applied to develop Si-based anodes in SIBs by employing similar strategies to overcome their drawbacks. In this review, a brief history of Si-NPs' usage in LIBs is provided and discuss the strategies employed to overcome the challenges, aiming to inspire and offer valuable insights to guide future research endeavors.

2.
Materials (Basel) ; 16(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37687583

RESUMEN

Silicon has been proven to be one of the most promising anode materials for the next generation of lithium-ion batteries for application in batteries, the Si anode should have high capacity and must be industrially scalable. In this study, we designed and synthesised a hollow structure to meet these requirements. All the processes were carried out without special equipment. The Si nanoparticles that are commercially available were used as the core sealed inside a TiO2 shell, with rationally designed void space between the particles and shell. The Si@TiO2 were characterised using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The optimised hollow-structured silicon nanoparticles, when used as the anode in a lithium-ion battery, exhibited a high reversible specific capacity over 630 mAhg-1, much higher than the 370 mAhg-1 from the commercial graphite anodes. This excellent electrochemical property of the nanoparticles could be attributed to their optimised phase and unique hollow nanostructure.

3.
RSC Adv ; 11(13): 7280-7293, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35423269

RESUMEN

Rheumatoid arthritis (RA) is a common worldwide chronic autoimmune disease, characterised by synovial hyperplasia, inflammatory cell infiltration, pannus formation and destruction of articular cartilage and bone matrix. It is one of the most common forms of osteoarthritis bestowing high rates of both disability and death. Increasing attention has been paid to the use of natural medicines and natural products in the treatment of RA and patients' acceptance has increased year by year because of their high efficacy and safety. Flavonoids are a group of important secondary metabolites occurring in many plants which have rich biological activities such as anti-rheumatic, vasodilator, and anti-tumor effects. Many successful medical treatments of RA appear to be attributable to the application of flavonoids. Quercetin, a representative active member of the flavonoid family, is found abundantly in many plants, e.g. apples, berries, cabbages, onions, and ginkgo. In recent years, progress has been made in the research of its anti-rheumatoid effects which indicate that it is potentially a noteworthy prodrug for the treatment of RA. However, the poor solubility of quercetin affects its bioavailability and clinical efficacy. This review aims to provide an up to date summary of the biological effects and mechanism of action of quercetin for the treatment of RA, and the research progress made towards nano formulations of quercetin to improve its solubility and efficacy.

5.
Nanomaterials (Basel) ; 10(6)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32485843

RESUMEN

As one of the new types of functional materials, nano-sized composite energetic materials (nano-CEMs) possess many advantages and broad application prospects in the research field of explosives and propellants. The recent progress in the preparation and performance characterization of Al-based nano-CEMs has been reviewed. The preparation methods and properties of Al-based nano-CEMs are emphatically analyzed. Special emphasis is focused on the improved performances of Al-based nano-CEMs, which are different from those of conventional micro-sized composite energetic materials (micro-CEMs), such as thermal decomposition and hazardous properties. The existing problems and challenges for the future work on Al-based nano-CEMs are discussed.

6.
Faraday Discuss ; 222(0): 332-349, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32101206

RESUMEN

The functionalisation of silicon nanoparticles with a terminal thiocyanate group, producing isothiocyanate-capped silicon nanoparticles (ITC-capped SiNPs) has been successfully attained. The procedure for the synthesis is a two-step process that occurs via thermally induced hydrosilylation of hydrogen terminated silicon nanoparticles (H-SiNPs) and further reaction with potassium thiocyanate (KSCN). The synthesis was confirmed by Fourier transform infrared (FTIR) spectroscopy and X-Ray photoelectron spectroscopy (XPS). At the same time, the internalisation and the cytotoxicity of the ITC-capped SiNPs in vitro were assessed in two cell lines: Caco-2, human colorectal cancer cells and CCD-841, human colon "normal" cells. The results showed that above concentrations of 15 µg ml-1, the cell viability of both cell lines was depleted significantly when treated with ITC SiNPs, particularly over a 48 hour period, to approximately 20% cell viability at the highest treatment concentration (70 µg ml-1). Flow cytometry was employed to determine cellular uptake in Caco-2 cells treated with ITC SiNPs. It was observed that at lower SiNP concentrations, uptake efficiency was significantly improved for time periods under 12 hours; overall it was noted that cellular uptake was positively dependent on the period of incubation and the temperature of incubation. As such, it was concluded that the mechanism of uptake of ITC SiNPs was through endocytosis. Synchrotron FTIR spectroscopy, by means of line spectral analysis and IR imaging, provided further evidence to suggest the internalisation of ITC SiNPs displays a strong localisation, with an affinity for the nucleus of treated Caco-2 cells.


Asunto(s)
Citotoxinas/farmacología , Isotiocianatos/farmacología , Nanopartículas/química , Silicio/química , Células CACO-2 , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citotoxinas/síntesis química , Citotoxinas/metabolismo , Relación Dosis-Respuesta a Droga , Endocitosis/fisiología , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Humanos , Hidrogenación , Hidrólisis , Isotiocianatos/química , Nanopartículas/ultraestructura , Espectroscopía de Fotoelectrones
7.
Sci Rep ; 8(1): 1084, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29348534

RESUMEN

Allyl isothiocyanate (AITC), a dietary phytochemical in some cruciferous vegetables, exhibits promising anticancer activities in many cancer models. However, previous data showed AITC to have a biphasic effect on cell viability, DNA damage and migration in human hepatoma HepG2 cells. Moreover, in a 3D co-culture of HUVEC with pericytes, it inhibited tube formation at high doses but promoted this at low doses, which confirmed its biphasic effect on angiogenesis. siRNA knockdown of Nrf2 and glutathione inhibition abolished the stimulation effect of AITC on cell migration and DNA damage. The biological activity of a novel AITC-conjugated silicon quantum dots (AITC-SiQDs) has been investigated for the first time. AITC-SiQDs showed similar anti-cancer properties to AITC at high doses while avoiding the low doses stimulation effect. In addition, AITC-SiQDs showed a lower and long-lasting activation of Nrf2 translocation into nucleus which correlated with their levels of cellular uptake, as detected by the intrinsic fluorescence of SiQDs. ROS production could be one of the mechanisms behind the anti-cancer effect of AITC-SiQDs. These data provide novel insights into the biphasic effect of AITC and highlight the application of nanotechnology to optimize the therapeutic potential of dietary isothiocyanates in cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Isotiocianatos/farmacología , Puntos Cuánticos , Silicio , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Isotiocianatos/química , Factor 2 Relacionado con NF-E2/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Puntos Cuánticos/química , Especies Reactivas de Oxígeno/metabolismo , Silicio/química
8.
RSC Adv ; 8(5): 2552-2560, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35541495

RESUMEN

Microigniters play an important role for the reliable initiation of micro explosive devices. However, the microigniter is still limited by the low out-put energy to realize high reliability and safety. Integration of energetic materials with microigniters is an effective method to enhance the ignition ability. In this work, a Al/Co3O4 nanothermite film with a three-dimensionally ordered macroporous structure was prepared by the deposition of nanoscale Al layers using magnetron sputtering on Co3O4 skeletons that are synthesized using an inverse template method. Both the uniform structure and nanoscale contact between the Al layers and the Co3O4 skeletons lead to an excellent exothermicity. In order to investigate the ignition properties, a micro-energetic igniter has been fabricated by the integration of the Al/Co3O4 nanothermite film with a semiconductor bridge microigniter. The thermite reactions between the nanoscale Al layer and the Co3O4 skeleton extensively promote the intensity of the spark, the length in duration and the size of the area, which greatly enhance the ignition reliability of the micro-energetic igniter. Moreover, this novel design enables the micro-energetic igniter to fire the pyrotechnic Zr/Pb3O4 in a gap of 3.7 mm by capacitor discharge stimulation and to keep the intrinsic instantaneity high and firing energy low. The realization of gap ignition will surely improve the safety level of initiating systems and have a significant impact on the design and application of explosive devices.

9.
J Biomed Res ; 32(2): 91-106, 2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-28866655

RESUMEN

Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches.

10.
Breast Cancer Res Treat ; 165(3): 531-543, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28695300

RESUMEN

PURPOSE: Combining molecular therapies with chemotherapy may offer an improved clinical outcome for chemoresistant tumours. Sphingosine-1-phosphate (S1P) receptor antagonist and sphingosine kinase 1 (SK1) inhibitor FTY720 (FTY) has promising anticancer properties, however, it causes systemic lymphopenia which impairs its use in cancer patients. In this study, we developed a nanoparticle (NP) combining docetaxel (DTX) and FTY for enhanced anticancer effect, targeted tumour delivery and reduced systemic toxicity. METHODS: Docetaxel, FTY and glucosamine were covalently conjugated to poly(lactic-co-glycolic acid) (PLGA). NPs were characterised by dynamic light scattering and electron microscopy. The cellular uptake, cytotoxicity and in vivo antitumor efficacy of CNPs were evaluated. RESULTS: We show for the first time that in triple negative breast cancer cells FTY provides chemosensitisation to DTX, allowing a four-fold reduction in the effective dose. We have encapsulated both drugs in PLGA complex NPs (CNPs), with narrow size distribution of ~ 100 nm and excellent cancer cell uptake providing sequential, sustained release of FTY and DTX. In triple negative breast cancer cells and mouse breast cancer models, CNPs had similar efficacy to systemic free therapies, but allowed an effective drug dose reduction. Application of CNPs has significantly reversed chemotherapy side effects such as weight loss, liver toxicity and, most notably, lymphopenia. CONCLUSIONS: We show for the first time the DTX chemosensitising effects of FTY in triple negative breast cancer. We further demonstrate that encapsulation of free drugs in CNPs can improve targeting, provide low off-target toxicity and most importantly reduce FTY-induced lymphopenia, offering potential therapeutic use of FTY in clinical cancer treatment.


Asunto(s)
Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/patología , Clorhidrato de Fingolimod/administración & dosificación , Linfopenia/inducido químicamente , Nanopartículas , Taxoides/administración & dosificación , Animales , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Docetaxel , Femenino , Clorhidrato de Fingolimod/efectos adversos , Humanos , Ratones , Metástasis de la Neoplasia , Estadificación de Neoplasias , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Sci Rep ; 7(1): 5901, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28724986

RESUMEN

Many prostate cancers relapse after initial chemotherapy treatment. Combining molecular and chemotherapy together with encapsulation of drugs in nanocarriers provides effective drug delivery and toxicity reduction. We developed core shell lipid-polymer hybrid nanoparticles (CSLPHNPs) with poly (lactic-co-glycolic acid) (PLGA) core and lipid layer containing docetaxel and clinically used inhibitor of sphingosine kinase 1 (SK1) FTY720 (fingolimod). We show for the first time that FTY720 (both free and in CSLPHNPs) re-sensitizes castrate resistant prostate cancer cells and tumors to docetaxel, allowing a four-fold reduction in effective dose. Our CSLPHNPs showed high serum stability and a long shelf life. CSLPHNPs demonstrated a steady uptake by tumor cells, sustained intracellular drug release and in vitro efficacy superior to free therapies. In a mouse model of human prostate cancer, CSLPHNPs showed excellent tumor targeting and significantly lower side effects compared to free drugs, importantly, reversing lymphopenia induced by FTY720. Overall, we demonstrate that nanoparticle encapsulation can improve targeting, provide low off-target toxicity and most importantly reduce FTY720-induced lymphopenia, suggesting its potential use in clinical cancer treatment.


Asunto(s)
Docetaxel/uso terapéutico , Lípidos/química , Terapia Molecular Dirigida , Nanopartículas/química , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Docetaxel/farmacología , Liberación de Fármacos , Humanos , Masculino , Ratones Endogámicos NOD , Ratones SCID , Nanopartículas/ultraestructura , Metástasis de la Neoplasia , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química
12.
ACS Appl Mater Interfaces ; 9(19): 16243-16251, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28445645

RESUMEN

Oxide materials with redox capability have attracted worldwide attentions in many applications. Introducing defects into crystal lattice is an effective method to modify and optimize redox capability of oxides as well as their catalytic performance. However, the relationship between intrinsic characteristics of defects and properties of oxides has been rarely reported. Herein, we report a facile strategy to introduce defects by doping a small amount of Ni atoms (∼1.8 at. %) into ceria lattice at atomic level through the effect of microstructure of crystal on the redox property of ceria. Amazingly, a small amount of single Ni atom-doped ceria has formed a homogeneous solid solution with uniform lotuslike morphology. It performs an outstanding catalytic performance of a reduced T50 of CO oxidation at 230 °C, which is 135 °C lower than that of pure CeO2 (365 °C). This is largely attributed to defects such as lattice distortion, crystal defects and elastic strain induced by Ni dopants. The DFT calculation has revealed that the electron density distribution of oxygen ions near Ni dopant, the reduced formation energy of oxygen vacancy originated from local chemical effect caused by local distortion after Ni doping. These differences have a great effect on increasing the concentration of oxygen vacancies and enhancing the migration of lattice oxygen from bulk to a surface which is closely related to optimized redox properties. As a result, oxygen storage capacity and the associated catalytic reactivity has been largely increased. We have clearly demonstrated the change of crystal lattice and the charge distribution effectively modify its chemical and physical properties at the atomic scale.

13.
Small ; 13(20)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28371327

RESUMEN

MnO as anode materials has received particular interest owing to its high specific capacity, abundant resources, and low cost. However, serious problems related to the large volume change (>170%) during the lithiation/delithiation processes still results in poor rate capability and fast capacity decay. With homogenous crystals of MnO grown in the network of carbon nanofibers (CNF), binding effect of CNF can effectively weaken the volume change of MnO during cycles. In this work, a CNF/MnO flexible electrode for lithium-ion batteries is designed and synthesized. The CNF play the roles of conductive channel and elastically astricting MnO particles during lithiation/delithiation. CNF/MnO as binder-free anode delivers specific capacity of 983.8 mAh g-1 after 100th cycle at a current density of 0.2 A g-1 , and 600 mAh g-1 at 1 A g-1 which are much better than those of pure MnO and pure CNF. The ex-situ morphologies clearly show the relative volume change of MnO/CNF as anode under various discharging and charging times. CNF can elastically buffer the volume change of MnO during charging/discharging cycles. A facile and scalable approach for synthesizing a novel flexible binder-free anode of CNF/MnO for potential application in highly reversible lithium storage devices is presented.

14.
Sci Rep ; 7: 40224, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-28057940

RESUMEN

In this work the chalcopyrite CuIn3Se5-xTex (x = 0~0.5) with space group through isoelectronic substitution of Te for Se have been prepared, and the crystal structure dilation has been observed with increasing Te content. This substitution allows the anion position displacement ∆u = 0.25-u to be zero at x ≈ 0.15. However, the material at x = 0.1 (∆u = 0.15 × 10-3), which is the critical Te content, presents the best thermoelectric (TE) performance with dimensionless figure of merit ZT = 0.4 at 930 K. As x value increases from 0.1, the quality factor B, which informs about how large a ZT can be expected for any given material, decreases, and the TE performance degrades gradually due to the reduction in nH and enhancement in κL. Combining with the ZTs from several chalcopyrite compounds, it is believable that the best thermoelectric performance can be achieved at a certain ∆u value (∆u ≠ 0) for a specific space group if their crystal structures can be engineered.

15.
Nat Nanotechnol ; 12(1): 55-60, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27723733

RESUMEN

How to suppress the performance deterioration of thermoelectric materials in the intrinsic excitation region remains a key challenge. The magnetic transition of permanent magnet nanoparticles from ferromagnetism to paramagnetism provides an effective approach to finding the solution to this challenge. Here, we have designed and prepared magnetic nanocomposite thermoelectric materials consisting of BaFe12O19 nanoparticles and Ba0.3In0.3Co4Sb12 matrix. It was found that the electrical transport behaviours of the nanocomposites are controlled by the magnetic transition of BaFe12O19 nanoparticles from ferromagnetism to paramagnetism. BaFe12O19 nanoparticles trap electrons below the Curie temperature (TC) and release the trapped electrons above the TC, playing an 'electron repository' role in maintaining high figure of merit ZT. BaFe12O19 nanoparticles produce two types of magnetoelectric effect-electron spiral motion and magnon-drag thermopower-as well as enhancing phonon scattering. Our work demonstrates that the performance deterioration of thermoelectric materials in the intrinsic excitation region can be suppressed through the magnetic transition of permanent magnet nanoparticles.

16.
ACS Appl Mater Interfaces ; 8(35): 23175-80, 2016 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-27541319

RESUMEN

Although binary In-Se based alloys have in recent years gained interest as thermoelectric (TE) candidates, little attention has been paid to In6Se7-based compounds. Substituting Pb in In6Se7, preference for Pb(2+) in the In(+) site has been observed, allowing Fermi level (Fr) shift toward the conduction band, where the localized state conduction becomes dominant. Consequently, the Hall carrier concentration (nH) has been significantly enhanced with the highest nH value being about 2-3 orders of magnitude higher than that of the Pb-free sample. Meanwhile, the lattice thermal conductivity (κL) tends to be reduced as the nH value increases, owing to an increased phonon scattering on carriers. As a result, a significantly enhanced TE performance has been achieved with the highest TE figure of merit (ZT) of 0.4 at ∼850 K. This ZT value is 27 times that of intrinsic In6Se7 (ZT = 0.015 at 640 K), which proves a successful band structure engineering through site preference of Pb in In6Se7.

17.
Sci Rep ; 6: 22588, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26935405

RESUMEN

Mn2O3 has been selected to realize nanothermite membrane for the first time in the literature. Mn2O3/Al nanothermite has been synthesized by magnetron sputtering a layer of Al film onto three-dimensionally ordered macroporous (3DOM) Mn2O3 skeleton. The energy release is significantly enhanced owing to the unusual 3DOM structure, which ensures Al and Mn2O3 to integrate compactly in nanoscale and greatly increase effective contact area. The morphology and DSC curve of the nanothermite membrane have been investigated at various aluminizing times. At the optimized aluminizing time of 30 min, energy release reaches a maximum of 2.09 kJ∙g(-1), where the Al layer thickness plays a decisive role in the total energy release. This method possesses advantages of high compatibility with MEMS and can be applied to other nanothermite systems easily, which will make great contribution to little-known nanothermite research.

18.
ACS Appl Mater Interfaces ; 8(14): 8908-17, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27007883

RESUMEN

The novel thiourea-functionalized silicon nanoparticles (SiNPs) have been successfully synthesized using allylamine and sulforaphane, an important anticancer drug, followed by a hydrosilylation reaction on the surface of hydrogen terminated SiNPs. Their physiochemical properties have been investigated by photoluminescence emission, Fourier transform infrared spectroscopy (FTIR) and elemental analysis. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay has been employed to evaluate in vitro toxicity in human colorectal adenocarcinoma (Caco-2) cells and human normal colon epithelial (CCD) cells. The results show significant toxicity of thiourea SiNPs after 72 h of incubation in the cancer cell line, and the toxicity is concentration dependent and saturated for concentrations above 100 µg/mL. Confocal microscopy images have demonstrated the internalization of thiourea-functionalized SiNPs inside the cells. Flow cytometry data has confirmed receptor-mediated targeting in cancer cells. This nanocomposite takes advantage of the epidermal growth factor receptor (EGFR) active targeting of the ligand in addition to the photoluminescence properties of SiNPs for bioimaging purposes. The results suggest that this novel nanosystem can be extrapolated for active targeting of the receptors that are overexpressed in cancer cells such as EGFR using the targeting characteristics of thiourea-functionalized SiNPs and therefore encourage further investigation and development of anticancer agents specifically exploiting the EGFR inhibitory activity of such nanoparticles.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Receptores ErbB/biosíntesis , Nanopartículas/administración & dosificación , Células CACO-2 , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Nanopartículas/química , Tamaño de la Partícula , Silicio/administración & dosificación , Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Tiourea/administración & dosificación , Tiourea/química
19.
PLoS One ; 10(9): e0138771, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26402917

RESUMEN

The potential cytotoxicity of cadmium selenide (CdSe) quantum dots (QDs) presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN) is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 µM. Pre-treatment with SFN (5 µM) increased cell viability in response to CdSe QDs (20 µM) from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3-6 h), followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy.


Asunto(s)
Compuestos de Cadmio/toxicidad , Isotiocianatos/farmacología , Hígado/patología , Puntos Cuánticos/toxicidad , Compuestos de Selenio/toxicidad , Adenina/análogos & derivados , Adenina/farmacología , Androstadienos/farmacología , Animales , Autofagia/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular , Técnicas de Silenciamiento del Gen , Glutatión/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Espacio Intracelular/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Hígado/efectos de los fármacos , Hígado/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Ratones Endogámicos ICR , Factor 2 Relacionado con NF-E2/metabolismo , Sustancias Protectoras/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sulfóxidos , Transcripción Genética/efectos de los fármacos , Wortmanina
20.
Inorg Chem ; 54(15): 7368-80, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26173067

RESUMEN

Cadmium selenide quantum dots of 2.2-2.3 nm diameter were prepared by phosphorus-free methods using oleic acid as stabilizing surface ligand. Ligand exchange monitored quantitatively by (1)H NMR spectroscopy gave an estimate of 30-38 monodentate ligands per nanocrystal, with a ligand density of 1.8-2.3 nm(-2). The extent of ligand exchange with macrocycles carrying one or more functional groups was investigated, with the aim of producing nanocrystal-macrocycle conjugates with a limited number of coligands. Metal-free porphyrins are able to sequester the Cd(2+) ions from the Cd(oleate)2 outer layer of the nanocrystals. Zinc porphyrin complexes carrying one carboxylate function displace oleate efficiently to give porphyrin/CdSe composites with porphyrins stacked upright on the crystal surface. Porphyrins with four potential ligating sites are able to bind to the crystal surface only if the donors are at the end of sufficiently long and flexible tethers. High-dilution methods allowed the synthesis and isolation of well-defined composites of composition [CdSe{porphyrin}2], where porphyrin = 5,10,15,20-tetrakis{3-(carboxy-n-alkyloxy)phenyl}porphyrinato zinc (n = 5 or 10) and 5,10,15,20-tetrakis{3-(11-undecenyloxythiol)phenyl}porphyrinato zinc. Comparison of the composition data obtained by (1)H NMR spectroscopy with luminescence quenching behavior suggests a dependence of quenching efficiency on the tether length. Luminescence quenching was also observed for porphyrins that, according to (1)H NMR results, do not undergo surface ligand exchange.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...