Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Traffic ; 19(12): 933-945, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30125442

RESUMEN

Mutations in the genes encoding polycystin-1 (PC1) and polycystin 2 (PC2) cause autosomal dominant polycystic kidney disease. These transmembrane proteins colocalize in the primary cilia of renal epithelial cells, where they may participate in sensory processes. PC1 is also found in the apical membrane when expressed in cultured epithelial cells. PC1 undergoes autocatalytic cleavage, producing an extracellular N-terminal fragment that remains noncovalently attached to the transmembrane C-terminus. Exposing cells to alkaline solutions elutes the N-terminal fragment while the C-terminal fragment is retained in the cell membrane. Utilizing this observation, we developed a "strip-recovery" synchronization protocol to study PC1 trafficking in polarized LLC-PK1 renal epithelial cells. Following alkaline strip, a new cohort of PC1 repopulates the cilia within 30 minutes, while apical delivery of PC1 was not detectable until 3 hours. Brefeldin A (BFA) blocked apical PC1 delivery, while ciliary delivery of PC1 was BFA insensitive. Incubating cells at 20°C to block trafficking out of the trans-Golgi network also inhibits apical but not ciliary delivery. These results suggest that newly synthesized PC1 takes distinct pathways to the ciliary and apical membranes. Ciliary PC1 appears to by-pass BFA sensitive Golgi compartments, while apical delivery of PC1 traverses these compartments.


Asunto(s)
Membrana Celular/metabolismo , Canales Catiónicos TRPP/metabolismo , Animales , Línea Celular , Polaridad Celular , Retículo Endoplásmico/metabolismo , Células Epiteliales/metabolismo , Riñón/citología , Señales de Clasificación de Proteína , Transporte de Proteínas , Porcinos , Canales Catiónicos TRPP/química
2.
Mol Biol Cell ; 28(2): 261-269, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27881662

RESUMEN

Autosomal dominant polycystic kidney disease is caused by mutations in the genes encoding polycystin-1 (PC1) and polycystin-2 (PC2), which form an ion channel complex that may mediate ciliary sensory processes and regulate endoplasmic reticulum (ER) Ca2+ release. Loss of PC1 expression profoundly alters cellular energy metabolism. The mechanisms that control the trafficking of PC1 and PC2, as well as their broader physiological roles, are poorly understood. We found that O2 levels regulate the subcellular localization and channel activity of the polycystin complex through its interaction with the O2-sensing prolyl hydroxylase domain containing protein EGLN3 (or PHD3), which hydroxylates PC1. Moreover, cells lacking PC1 expression use less O2 and show less mitochondrial Ca2+ uptake in response to bradykinin-induced ER Ca2+ release, indicating that PC1 can modulate mitochondrial function. These data suggest a novel role for the polycystins in sensing and responding to cellular O2 levels.


Asunto(s)
Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/fisiología , Animales , Retículo Endoplásmico/metabolismo , Humanos , Hipoxia , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/fisiología , Células LLC-PK1 , Mitocondrias/metabolismo , Oxígeno/metabolismo , Transporte de Proteínas/fisiología , Porcinos
3.
Aging (Albany NY) ; 7(6): 419-34, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26142908

RESUMEN

Cellular function relies on a balance between protein synthesis and breakdown. Macromolecular breakdown through autophagy is broadly required for cellular and tissue development, function, and recovery from stress. While Caenorhabditis elegans is frequently used to explore cellular responses to development and stress, the most common assays for autophagy in this system lack tissue-level resolution. Different tissues within an organism have unique functional characteristics and likely vary in their reliance on autophagy under different conditions. To generate a tissue-specific map of autophagy in C. elegans we used a dual fluorescent protein (dFP) tag that releases monomeric fluorescent protein (mFP) upon arrival at the lysosome. Tissue-specific expression of dFP::LGG-1 revealed autophagic flux in all tissues, but mFP accumulation was most dramatic in the intestine. We also observed variable responses to stress: starvation increased autophagic mFP release in all tissues, whereas anoxia primarily increased intestinal autophagic flux. We observed autophagic flux with tagged LGG-1, LGG-2, and two autophagic cargo reporters: a soluble cytoplasmic protein, and mitochondrial TOMM-7. Finally, an increase in mFP in older worms was consistent with an age-dependent shift in proteostasis. These novel measures of autophagic flux in C. elegans reveal heterogeneity in autophagic response across tissues during stress and aging.


Asunto(s)
Envejecimiento/fisiología , Autofagia/fisiología , Caenorhabditis elegans/fisiología , Estrés Fisiológico/fisiología , Animales , Regulación de la Expresión Génica/fisiología
4.
Pediatr Nephrol ; 29(4): 505-11, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23824180

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic cause of end-stage renal disease, affecting approximately 1 in 1,000 people. The disease is characterized by the development of numerous large fluid-filled renal cysts over the course of decades. These cysts compress the surrounding renal parenchyma and impair its function. Mutations in two genes are responsible for ADPKD. The protein products of both of these genes, polycystin-1 and polycystin-2, localize to the primary cilium and participate in a wide variety of signaling pathways. Polycystin-1 undergoes several proteolytic cleavages that produce fragments which manifest biological activities. Recent results suggest that the production of polycystin-1 cleavage fragments is necessary and sufficient to account for at least some, although certainly not all, of the physiological functions of the parent protein.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/metabolismo , Animales , Humanos , Mutación , Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/genética , Transcripción Genética
5.
Traffic ; 13(10): 1411-1428, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22748138

RESUMEN

Traffic through endosomes and lysosomes is controlled by small G-proteins of the Rab5 and Rab7 families. Like humans, Saccharomyces cerevisiae has three Rab5s (Vps21, Ypt52 and Ypt53) and one Rab7 (Ypt7). Here, we elucidate the functional roles and regulation of the yeast Rab5s. Using GFP-tagged cargoes, a novel quantitative multivesicular body (MVB) sorting assay, and electron microscopy, we show that MVB biogenesis and thus MVB cargo sorting is severely impaired in vps21Δ ypt52Δ double mutants. Ypt53, the third Rab5 paralog, is hardly expressed during normal growth but its transcription is strongly induced by cellular stress through the calcineurin-Crz1 pathway. The requirement for Rab5 activity in stress tolerance facilitated identification of Msb3/Gyp3 as the principal Rab5 GAP (GTPase accelerating protein). In vitro GAP assays verified that Vps21 is a preferred Gyp3 target. Moreover, we demonstrate that Gyp3 spatially restricts active Vps21 to intermediate endosomal compartments by preventing Vps21 accumulation on lysosomal vacuoles. Gyp3, therefore, operates as a compartmental insulator that helps to define the spatial domain of Vps21 signaling in the endolysosomal pathway.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Lisosomas/metabolismo , Cuerpos Multivesiculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Calcineurina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Activadoras de GTPasa/genética , Cuerpos Multivesiculares/ultraestructura , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al GTP rab/genética
6.
Dev Cell ; 22(1): 197-210, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22178500

RESUMEN

Mutations in Pkd1, encoding polycystin-1 (PC1), cause autosomal-dominant polycystic kidney disease (ADPKD). We show that the carboxy-terminal tail (CTT) of PC1 is released by γ-secretase-mediated cleavage and regulates the Wnt and CHOP pathways by binding the transcription factors TCF and CHOP, disrupting their interaction with the common transcriptional coactivator p300. Loss of PC1 causes increased proliferation and apoptosis, while reintroducing PC1-CTT into cultured Pkd1 null cells reestablishes normal growth rate, suppresses apoptosis, and prevents cyst formation. Inhibition of γ-secretase activity impairs the ability of PC1 to suppress growth and apoptosis and leads to cyst formation in cultured renal epithelial cells. Expression of the PC1-CTT is sufficient to rescue the dorsal body curvature phenotype in zebrafish embryos resulting from either γ-secretase inhibition or suppression of Pkd1 expression. Thus, γ-secretase-dependent release of the PC1-CTT creates a protein fragment whose expression is sufficient to suppress ADPKD-related phenotypes in vitro and in vivo.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Apoptosis , Factores de Transcripción TCF/metabolismo , Canales Catiónicos TRPP/fisiología , Factor de Transcripción CHOP/metabolismo , Pez Cebra/metabolismo , Factores de Transcripción p300-CBP/genética , Animales , Proliferación Celular , Células Cultivadas , Quistes/etiología , Quistes/metabolismo , Quistes/patología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Humanos , Immunoblotting , Inmunoprecipitación , Riñón/metabolismo , Riñón/patología , Fenotipo , Riñón Poliquístico Autosómico Dominante/fisiopatología , Factores de Transcripción TCF/genética , Canales Catiónicos TRPP/antagonistas & inhibidores , Factor de Transcripción CHOP/genética , Activación Transcripcional , Vía de Señalización Wnt , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Factores de Transcripción p300-CBP/metabolismo
7.
PLoS One ; 6(12): e28264, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22194818

RESUMEN

BACKGROUND: The large conductance calcium-activated potassium channel alpha-subunit (Slo) is widely distributed throughout the body and plays an important role in a number of diseases. Prior work has shown that Slo, through its S10 region, interacts with ß-catenin, a key component of the cytoskeleton framework and the Wnt signaling pathway. However, the physiological significance of this interaction was not clear. METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of proteomic and cell biology tools we show the existence of additional multiple binding sites in Slo, and explore in detail ß-catenin interactions with the S10 region. We demonstrate that deletion of this region reduces Slo surface expression in HEK cells, which indicates that interaction with beta-catenin is important for Slo surface expression. This is confirmed by reduced expression of Slo in HEK cells and chicken (Gallus gallus domesticus leghorn white) hair cells treated with siRNA to ß-catenin. HSlo reciprocally co-immunoprecipitates with ß-catenin, indicating a stable binding between these two proteins, with the S10 deletion mutant having reduced binding with ß-catenin. We also observed that mutations of the two putative GSK phosphorylation sites within the S10 region affect both the surface expression of Slo and the channel's voltage and calcium sensitivities. Interestingly, expression of exogenous Slo in HEK cells inhibits ß-catenin-dependent canonical Wnt signaling. CONCLUSIONS AND SIGNIFICANCE: These studies identify for the first time a central role for ß-catenin in mediating Slo surface expression. Additionally we show that Slo overexpression can lead to downregulation of Wnt signaling.


Asunto(s)
Membrana Celular/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , beta Catenina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Bioensayo , Pollos , Técnicas de Silenciamiento del Gen , Células HEK293 , Células Ciliadas Auditivas/metabolismo , Humanos , Inmunoprecipitación , Uniones Intercelulares/metabolismo , Cinética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/química , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , Fosforilación , Unión Proteica , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo , Eliminación de Secuencia , Transfección , Vía de Señalización Wnt
8.
Proc Natl Acad Sci U S A ; 108(26): 10679-84, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21670265

RESUMEN

Polycystic kidney disease (PKD) is a genetic disorder that is characterized by cyst formation in kidney tubules. PKD arises from abnormalities of the primary cilium, a sensory organelle located on the cell surface. Here, we show that the primary cilium of renal epithelial cells contains a protein complex comprising adenylyl cyclase 5/6 (AC5/6), A-kinase anchoring protein 150 (AKAP150), and protein kinase A. Loss of primary cilia caused by deletion of Kif3a results in activation of AC5 and increased cAMP levels. Polycystin-2 (PC2), a ciliary calcium channel that is mutated in human PKD, interacts with AC5/6 through its C terminus. Deletion of PC2 increases cAMP levels, which can be corrected by reexpression of wild-type PC2 but not by a mutant lacking calcium channel activity. Phosphodiesterase 4C (PDE4C), which catabolizes cAMP, is also located in renal primary cilia and interacts with the AKAP150 complex. Expression of PDE4C is regulated by the transcription factor hepatocyte nuclear factor-1ß (HNF-1ß), mutations of which produce kidney cysts. PDE4C is down-regulated and cAMP levels are increased in HNF-1ß mutant kidney cells and mice. Collectively, these findings identify PC2 and PDE4C as unique components of an AKAP complex in primary cilia and reveal a common mechanism for dysregulation of cAMP signaling in cystic kidney diseases arising from different gene mutations.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Cilios/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Enfermedades Renales Quísticas/metabolismo , Canales Catiónicos TRPP/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Animales , AMP Cíclico/metabolismo , Técnicas para Inmunoenzimas , Ratones , Mutación , Transducción de Señal
9.
J Cell Biol ; 191(4): 701-10, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21079243

RESUMEN

Polycystic kidney disease is a common genetic disorder in which fluid-filled cysts displace normal renal tubules. Here we focus on autosomal dominant polycystic kidney disease, which is attributable to mutations in the PKD1 and PKD2 genes and which is characterized by perturbations of renal epithelial cell growth control, fluid transport, and morphogenesis. The mechanisms that connect the underlying genetic defects to disease pathogenesis are poorly understood, but their exploration is shedding new light on interesting cell biological processes and suggesting novel therapeutic targets.


Asunto(s)
Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/fisiopatología , Animales , Proteínas de Unión al GTP/metabolismo , Humanos , Riñón/patología , Riñón/fisiopatología , Modelos Moleculares , Riñón Poliquístico Autosómico Dominante/patología , Transducción de Señal/fisiología , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Proteínas Wnt/metabolismo
10.
Mol Biol Cell ; 21(24): 4338-48, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20980620

RESUMEN

Polycystin (PC)1 and PC2 are membrane proteins implicated in autosomal dominant polycystic kidney disease. A physiologically relevant cleavage at PC1's G protein-coupled receptor proteolytic site (GPS) occurs early in the secretory pathway. Our results suggest that PC2 increases both PC1 GPS cleavage and PC1's appearance at the plasma membrane. Mutations that prevent PC1's GPS cleavage prevent its plasma membrane localization. PC2 is a member of the trp family of cation channels and is an important PC1 binding partner. The effect of PC2 on PC1 localization is independent of PC2 channel activity, as tested using channel-inhibiting PC2 mutations. PC1 and PC2 can interact through their C-terminal tails, but removing the C-terminal tail of either protein has no effect on PC1 surface localization in human embryonic kidney 293 cells. Experiments in polarized LLC-PK cells show that apical and ciliary PC1 localization requires PC2 and that this delivery is sensitive to PC2 truncation. In sum, our work shows that PC2 expression is required for the movement of PC1 to the plasma and ciliary membranes. In fibroblast cells this localization effect is independent of PC2's channel activity or PC1 binding ability but involves a stimulation of PC1's GPS cleavage before the PC1 protein's surface delivery.


Asunto(s)
Riñón/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Procesamiento Proteico-Postraduccional , Canales Catiónicos TRPP/metabolismo , Animales , Western Blotting , Membrana Celular , Cilios/metabolismo , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Inmunoprecipitación , Riñón/patología , Células LLC-PK1 , Mutación , Riñón Poliquístico Autosómico Dominante/metabolismo , Unión Proteica , Isoformas de Proteínas , Estructura Terciaria de Proteína , Transporte de Proteínas , Porcinos , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/genética
11.
J Biol Chem ; 284(31): 21011-26, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19491093

RESUMEN

Autosomal dominant polycystic kidney disease is caused by mutations in the genes encoding polycystin-1 (PC-1) and polycystin-2 (PC-2). PC-1 cleavage releases its cytoplasmic C-terminal tail (CTT), which enters the nucleus. To determine whether PC-1 CTT cleavage is influenced by PC-2, a quantitative cleavage assay was utilized, in which the DNA binding and activation domains of Gal4 and VP16, respectively, were appended to PC-1 downstream of its CTT domain (PKDgalvp). Cells cotransfected with the resultant PKDgalvp fusion protein and PC-2 showed an increase in luciferase activity and in CTT expression, indicating that the C-terminal tail of PC-1 is cleaved and enters the nucleus. To assess whether CTT cleavage depends upon Ca2+ signaling, cells transfected with PKDgalvp alone or together with PC-2 were incubated with several agents that alter intracellular Ca2+ concentrations. PC-2 enhancement of luciferase activity was not altered by any of these treatments. Using a series of PC-2 C-terminal truncated mutations, we identified a portion of the PC-2 protein that is required to stimulate PC-1 CTT accumulation. These data demonstrate that release of the CTT from PC-1 is influenced and stabilized by PC-2. This effect is independent of Ca2+ but is regulated by sequences contained within the PC-2 C-terminal tail, suggesting a mechanism through which PC-1 and PC-2 may modulate a novel signaling pathway.


Asunto(s)
Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/metabolismo , Sustitución de Aminoácidos/efectos de los fármacos , Aminoácidos/metabolismo , Animales , Células COS , Calcio/farmacología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Chlorocebus aethiops , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Genes Reporteros , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Ratones , Proteínas Mutantes/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Relación Estructura-Actividad
12.
Methods Cell Biol ; 94: 223-39, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20362093

RESUMEN

Polycystin-1 (PC1) is a large, membrane-bound protein that localizes to the cilia and is implicated in the common ciliopathy autosomal-dominant polycystic kidney disease. The physiological function of PC1 is dependent upon its subcellular localization as well as specific cleavages that release soluble fragments of its C-terminal tail. The techniques described here allow visualization and quantification of these aspects of the biology of the PC1 protein. To visualize PC1 at the plasma membrane, a live-cell surface labeling immunofluorescence protocol paired with the labeling of an internal antigen motif allows a robust detection of the surface population of this protein. This technique is modified to generate a surface enzyme-linked immunosorbent assay (ELISA), which quantitatively measures the amount of surface protein as a fraction of the total amount of the protein expressed in that cell population. These assays are powerful tools in the assessment of the small but biologically important pool of PC1 that reaches the cell surface. The C-terminal tail cleavage of PC1 constitutes an interesting modification that allows PC1 to extend its functional role into the nucleus. A reporter assay based on Gal4/VP16 luciferase can be used to quantitate the amount of PC1 C-terminal tail that reaches the nucleus. This assay can be paired with quantitative measurement of the protein expression in the cell, allowing a more complete understanding of the pattern of PC1 cleavage and the nuclear localization of the resultant.


Asunto(s)
Citoplasma/metabolismo , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Canales Catiónicos TRPP/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Citoplasma/química , Ensayo de Inmunoadsorción Enzimática/instrumentación , Ensayo de Inmunoadsorción Enzimática/métodos , Técnica del Anticuerpo Fluorescente/instrumentación , Técnica del Anticuerpo Fluorescente/métodos , Genes Reporteros , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Canales Catiónicos TRPP/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...