Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e16999, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37921241

RESUMEN

Peatlands are globally important stores of soil carbon (C) formed over millennial timescales but are at risk of destabilization by human and climate disturbance. Pools are ubiquitous features of many peatlands and can contain very high concentrations of C mobilized in dissolved and particulate organic form and as the greenhouses gases carbon dioxide (CO2 ) and methane (CH4 ). The radiocarbon content (14 C) of these aquatic C forms tells us whether pool C is generated by contemporary primary production or from destabilized C released from deep peat layers where it was previously stored for millennia. We present novel 14 C and stable C (δ13 C) isotope data from 97 aquatic samples across six peatland pool locations in the United Kingdom with a focus on dissolved and particulate organic C and dissolved CO2 . Our observations cover two distinct pool types: natural peatland pools and those formed by ditch blocking efforts to rewet peatlands (restoration pools). The pools were dominated by contemporary C, with the majority of C (~50%-75%) in all forms being younger than 300 years old. Both pool types readily transform and decompose organic C in the water column and emit CO2 to the atmosphere, though mixing with the atmosphere and subsequent CO2 emissions was more evident in natural pools. Our results show little evidence of destabilization of deep, old C in natural or restoration pools, despite the presence of substantial millennial-aged C in the surrounding peat. One possible exception is CH4 ebullition (bubbling), with our observations showing that millennial-aged C can be emitted from peatland pools via this pathway. Our results suggest that restoration pools formed by ditch blocking are effective at preventing the release of deep, old C from rewetted peatlands via aquatic export.


Asunto(s)
Dióxido de Carbono , Gases de Efecto Invernadero , Humanos , Anciano , Dióxido de Carbono/análisis , Ciclo del Carbono , Suelo , Cambio Climático
2.
Sci Total Environ ; 892: 164482, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37257619

RESUMEN

Agroforestry practices, such as hedgerow planting, are widely encouraged for climate change mitigation and there is an urgent need to assess their contribution to national 'net-zero' targets. This study examined the impact that planting hedgerows at different rates could make to UK net-zero goals over the next 40 years, with a focus on 2050. We analysed the carbon (C) content of native hedgerow species and determined hedge aboveground biomass (AGB) C stock via destructive sampling of hedges of known ages. AGB C stocks ranged from 8.34 Mg C ha-1 in the youngest hedges, to 40.42 Mg C ha-1 in old ones. Knowing the age of the hedgerows, we calculated their annual average AGB C sequestration rate, which was highest in young hedges (2.09 Mg C ha-1 yr-1), and lowest in 39 year old mature, regularly trimmed hedgerows (0.86 Mg C ha-1 yr-1). We present a time series of the annual AGB C sequestration rate change between hedge age categories, which increases from 2.09 Mg C ha-1 yr-1 in the first 6 years after planting, to 2.26 Mg C ha-1 yr-1 in the next 6 years, and then decreases to 0.43 Mg C ha-1 yr-1 between years 13 and 40. Our results indicate that, if encouraged widely, hedgerow planting can be a valuable tool for atmospheric CO2 capture and storage, contributing towards net-zero targets. However, current planting rates (1778.8 km yr-1) are too low to reach the net-zero goal set by the UK Climate Change Committee of increasing hedgerow length by 40 % by 2050. An increased planting rate of 7148.1 km yr-1 will achieve this goal by 2050, and, over 40 years, store 3.41 Tg CO2 in hedge AGB, or 10.13 Tg CO2 in hedge total biomass and in the soil, annually offsetting 1.5 %-4.5 % of UK annual agricultural CO2 emissions.


Asunto(s)
Dióxido de Carbono , Secuestro de Carbono , Biomasa , Dióxido de Carbono/análisis , Agricultura , Suelo , Plantas , Carbono
3.
Sci Total Environ ; 852: 158358, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36049686

RESUMEN

Conventional arable cropping with annual crops established by ploughing and harrowing degrades larger soil aggregates that contribute to storing soil organic carbon (SOC). The urgent need to increase SOC content of arable soils to improve their functioning and sequester atmospheric CO2 has motivated studies into the effects of reintroducing leys into long-term conventional arable fields. However, effects of short-term leys on total SOC accumulation have been equivocal. As soil aggregation may be important for carbon storage, we investigated the effects of arable-to-ley conversion on cambisol soil after three years of ley, on concentrations and stocks of SOC, nitrogen and their distributions in different sized water-stable aggregates. These values were benchmarked against soil from beneath hedgerow margins. SOC stocks (0-7 cm depth) rose from 20.3 to 22.6 Mg ha-1 in the arable-to-ley conversion, compared to 30 Mg ha-1 in hedgerows, but this 2.3 Mg ha-1 difference (or 0.77 Mg C ha-1 yr-1) was not significant). However, the proportion of large macroaggregates (> 2000 µm) increased 5.4-fold in the arable-to-ley conversion, recovering to similar abundance as hedgerow soils, driving near parallel increases in SOC and nitrogen within large macroaggregates (5.1 and 5.7-fold respectively). The total SOC (0-7 cm depth) stored in large macroaggregates increased from 2.0 to 9.6 Mg ha-1 in the arable-to-ley conversion, which no longer differed significantly from the 12.1 Mg ha-1 under hedgerows. The carbon therefore accumulated three times faster, at 2.53 Mg C ha-1 yr-1, in the large macroaggregates compared to the bulk soil. These findings highlight the value of monitoring large macroaggregate-bound SOC as a key early indicator of shifts in soil quality in response to change in field management, and the benefits of leys in soil aggregation, carbon accumulation, and soil functioning, providing justification for fiscal incentives that encourage wider use of leys in arable rotations.


Asunto(s)
Suelo , Trifolium , Carbono , Nitrógeno , Secuestro de Carbono , Poaceae , Medicago , Dióxido de Carbono , Agricultura , Agua
4.
J Environ Manage ; 307: 114484, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35078067

RESUMEN

Realising the carbon (C) sequestration capacity of agricultural soils is needed to reach Paris Climate Agreement goals; thus, quantifying hedgerow planting potential to offset anthropogenic CO2 emissions is crucial for accurate climate mitigation modelling. Although being a widespread habitat in England and throughout Europe, the potential of hedgerows to contribute to net-zero targets is unclear. This is the first study to quantify the soil organic carbon (SOC) sequestration rate associated with planting hedgerows. We derived SOC stocks beneath hedgerows based on two estimation methods to assess differences from adjacent intensively managed grassland fields and how these may be affected by sampling depth and hedgerow age, as well as the SOC estimation method used. Twenty-six hedgerows on five dairy farms in Cumbria, England, were classified based on the time since their planting. We measured SOC stocks in 10 cm depth intervals in the top 50 cm of soil beneath hedgerows and in adjacent grassland fields. SOC beneath hedgerows was on average 31.3% higher than in the fields, 3.3% for 2-4 year old hedgerows, 14.4% for 10 year old, 45.2% for 37 year old, and 57.2% for older ones. We show that SOC sequestration rate beneath 37 year old hedgerows was 1.48 Mg C ha-1 yr-1 in the top 50 cm of soil. If England reaches its goal of a 40% increase in hedgerow length, 6.3 Tg CO2 will be stored in the soil over 40 years, annually offsetting 4.7%-6.4% of present-day agricultural CO2 emissions. However, the current rate of planting funded by agri-environment schemes, which today reaches only 0.02% of emissions, is too slow. Private-sector payments for ecosystem services initiatives (e.g., 'Milk Plan') show much higher rates of planting and are needed alongside agri-environment schemes to ensure hedgerow planting contributes to net-zero targets.


Asunto(s)
Secuestro de Carbono , Suelo , Agricultura , Carbono , Ecosistema
5.
Sci Total Environ ; 789: 147880, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34058593

RESUMEN

Managing soil to support biodiversity is important to sustain the ecosystem services provided by soils upon which society depends. There is increasing evidence that functional diversity of soil biota is important for ecosystem services, and has been degraded by intensive agriculture. Importantly, the spatial distribution of reservoirs of soil biota in and surrounding arable fields is poorly understood. In a field experiment, grass-clover ley strips were introduced into four arable fields which had been under continuous intensive/conventional arable rotation for more than 10 years. Earthworm communities in arable fields and newly established grass-clover leys, as well as field boundary land uses (hedgerows and grassy field margins), were monitored over 2 years after arable-to-ley conversions. Within 2 years, earthworm abundance in new leys was 732 ± 244 earthworms m-2, similar to that in field margin soils (619 ± 355 earthworms m-2 yr-1) and four times higher than in adjacent arable soil (185 ± 132 earthworms m-2). Relative to the arable soils, earthworm abundance under the new leys showed changes in community composition, structure and functional group, which were particularly associated with an increase in anecic earthworms; thus new leys became more similar to grassy field margins. Earthworm abundance was similar in new leys that were either connected to biodiversity reservoirs i.e. field margins and hedgerows, or not (installed earthworm barriers). This suggests that, for earthworm communities in typical arable fields, biodiversity reservoirs in adjacent field margins and hedgerows may not be critical for earthworm populations to increase. We conclude that the increase in earthworm abundance in the new leys observed over 2 years was driven by recruitment from the existing residual population in arable soils. Therefore, arable soils are also potential reservoirs of biodiversity.


Asunto(s)
Oligoquetos , Agricultura , Animales , Biodiversidad , Ecosistema , Suelo
6.
J Environ Manage ; 287: 112242, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33711664

RESUMEN

Efforts to tackle diffuse water pollution from agriculture are increasingly focusing on improving farmers' awareness under the expectation that this would contribute to adoption of best management practices (BMPs) and, in turn, result in water quality improvements. To date, however, no study has explored the full awareness-behaviour-water quality pathway; with previous studies having mostly addressed the awareness-behaviour link relying on disciplinary approaches. Using an interdisciplinary approach, we investigate whether awareness-focussed approaches to mitigating diffuse water pollution from agriculture indeed result in water quality improvement, addressing the pathway in full. We worked with Dwr Cymru Welsh Water (a water and waste utility company in the UK) on a pesticide pollution intervention programme, referred to as "weed wiper trial". The main goal of the trial was to raise farmers' awareness regarding pesticide management practices and to promote uptake of BMPs to tackle the rising concentrations of the pesticide MCPA (2-methyl-4-chlorophenoxyacetic acid) in raw water in three catchments in Wales. Using factorial analysis of variance, we analysed MCPA concentrations from 2006 to 2019 in the three targeted catchments and in three control catchments. This was followed by semi-structured in-depth interviews with institutional stakeholders and farmers with varying degrees of exposure to the weed wiper trial. Results show that MCPA concentration for both targeted and control catchments had reduced after the implementation of the weed wiper trial. However, the decline was significantly larger (F(1) = 6.551, p < 0.05, n = 3077, Partial eta-squared (ηp2) = 0.002) for the targeted catchments (mean = 45.2%) compared to the control catchments (mean = 10.9%). Results from the stakeholder interviews indicate that improved awareness contributed to changes in farmers' behaviour and that these can be related to the water quality improvements reflected by the decline in MCPA concentration. Alongside awareness, other psychosocial, economic, agronomic factors, catchment and weather conditions also influenced farmer's ability to implement BMPs and thus overall water quality improvements.


Asunto(s)
Plaguicidas , Calidad del Agua , Agricultura , Gales , Contaminación del Agua/prevención & control
7.
J Environ Manage ; 223: 74-84, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29906675

RESUMEN

Grasslands store about 34% of the global terrestrial carbon (C) and are vital for the provision of various ecosystem services such as forage and climate regulation. About 89% of this grassland C is stored in the soil and is affected by management activities but the effects of these management activities on C storage under different climate settings are not known. In this study, we synthesized the effects of fertilizer (nitrogen and phosphorus) application, liming and grazing regime on the stock of SOC in global grasslands, under different site specific climatic settings using a meta-analysis of 341 datasets. We found an overall significant reduction (-8.5%) in the stock of SOC in global managed grasslands, mainly attributable to grazing (-15.0%), and only partially attenuated by fertilizer addition (+6.7%) and liming (+5.8%), indicating that management to improve biomass production does not contribute sufficient organic matter to replace that lost by direct removal by animals. Management activities had the greatest effect in the tropics (-22.4%) due primarily to heavy grazing, and the least effect in the temperate zone (-4.5%). The negative management effect reduced significantly with increasing mean annual temperature and mean annual precipitation in the temperate zone, suggesting that temperate grassland soils are potential C sinks in the face of climate change. For a sustainable management of grasslands that will provide adequate forage for livestock and mitigate climate change through C sequestration, we recommend that future tropical grassland management policies should focus on reducing the intensity of grazing. Also, to verify our findings for temperate grasslands and to better inform land management policy, future research should focus on the impacts of the projected climate change on net greenhouse gas exchange and potential climate feedbacks.


Asunto(s)
Carbono/análisis , Pradera , Gases de Efecto Invernadero , Suelo/química , Animales , Ecosistema , Fertilizantes
8.
Sci Total Environ ; 637-638: 398-407, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29753228

RESUMEN

Effects of climate change on managed grassland carbon (C) fluxes and biomass production are not well understood. In this study, we investigated the individual and interactive effects of experimental warming (+3 °C above ambient summer daily range of 9-12 °C), supplemental precipitation (333 mm +15%) and drought (333 mm -23%) on plant biomass, microbial biomass C (MBC), net ecosystem exchange (NEE) and dissolved organic C (DOC) flux in soil cores from two upland grasslands of different soil nitrogen (N) status (0.54% and 0.37%) in the UK. After one month of acclimation to ambient summer temperature and precipitation, five replicate cores of each treatment were subjected to three months of experimental warming, drought and supplemental precipitation, based on the projected regional summer climate by the end of the 21st Century, in a fully factorial design. NEE and DOC flux were measured throughout the experimental duration, alongside other environmental variables including soil temperature and moisture. Plant biomass and MBC were determined at the end of the experiment. Results showed that warming plus drought resulted in a significant decline in belowground plant biomass (-29 to -37%), aboveground plant biomass (-35 to -77%) and NEE (-13 to -29%), regardless of the N status of the soil. Supplemental precipitation could not reverse the negative effects of warming on the net ecosystem C uptake and plant biomass production. This was attributed to physiological stress imposed by warming which suggests that future summer climate will reduce the C sink capacity of the grasslands. Due to the low moisture retention observed in this study, and to verify our findings, it is recommended that future experiments aimed at measuring soil C dynamics under climate change should be carried out under field conditions. Longer term experiments are recommended to account for seasonal and annual variability, and adaptive changes in biota.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Pradera , Nitrógeno/análisis , Biomasa , Carbono , Ecosistema , Suelo
9.
Sci Total Environ ; 545-546: 84-94, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26745296

RESUMEN

Natural open-water pools are a common feature of northern peatlands and are known to be an important source of atmospheric methane (CH4). Pool environmental variables, particularly water chemistry, vegetation community and physical characteristics, have the potential to exert strong controls on carbon cycling in pools. A total of 66 peatland pools were studied across three regions of the UK (northern Scotland, south-west Scotland, and Northern Ireland). We found that within-region variability of pool water chemistry was low; however, for many pool variables measured there were significant differences between regions. PCA analysis showed that pools in SW Scotland were strongly associated with greater vegetative cover and shallower water depth which is likely to increase dissolved organic carbon (DOC) mineralisation rates, whereas pools in N Scotland were more open and deeper. Pool water DOC, particulate organic carbon and dissolved CH4 concentrations were significantly different between regions. Pools in Northern Ireland had the highest concentrations of DOC (mean=14.5 mg L(-1)) and CH4 (mean=20.6 µg C L(-1)). Chloride and sulphate concentrations were significantly higher in the pools in N Scotland (mean values 26.3 and 2.40 mg L(-1), respectively) than elsewhere, due to a stronger marine influence. The ratio of UV absorbance at 465 nm to absorbance at 665 nm for pools in Northern Ireland indicated that DOC was sourced from poorly humified peat, potentially increasing the bioavailability and mineralisation of organic carbon in pools compared to the pools elsewhere. This study, which specifically aims to address a lack of basic biogeochemical knowledge about pool water chemistry, clearly shows that peatland pools are highly regionally variable. This is likely to be a reflection of significant regional-scale differences in peatland C cycling.


Asunto(s)
Monitoreo del Ambiente , Suelo , Humedales , Ciclo del Carbono , Irlanda del Norte , Escocia
10.
J Environ Manage ; 133: 193-205, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24384281

RESUMEN

There is concern that ecosystem services provided by blanket peatlands have come under threat due to increasing degradation. Blanket peatlands are subject to a wide range of drivers of degradation and are topographically variable. As a result, many degradation forms can develop, including those resulting from eroding artificial drainage, incising gullies and areas of bare peat. Many degraded blanket peatlands have undergone restoration measures since the turn of the century. However, there has been little formal communication of the techniques used and their success. Using practitioner knowledge and a review of the available literature, this paper discusses the methodologies used for restoring sloping blanket peatlands. It then considers current understanding of the impact of restoration on blanket peatland ecosystem services. There is a paucity of research investigating impacts of several common restoration techniques and much more is needed if informed management decisions are to be made and funding is to be appropriately spent. Where data are available we find that restoration is largely beneficial to many ecosystem services, with improvements being observed in water quality and ecology. However, the same restoration technique does not always result in the same outcomes in all locations. The difference in response is predominantly due to the spatial and temporal heterogeneity inherent in all blanket peatlands. Peatland practitioners must take this variability into account when designing restoration strategies and monitoring impact.


Asunto(s)
Ecosistema , Suelo
11.
Sci Total Environ ; 404(2-3): 308-15, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18076974

RESUMEN

Hydrologic transport of dissolved organic carbon (DOC) from peat soils may differ to organo-mineral soils in how they responded to changes in flow, because of differences in soil profile and hydrology. In well-drained organo-mineral soils, low flow is through the lower mineral layer where DOC is absorbed and high flow is through the upper organic layer where DOC is produced. DOC concentrations in streams draining organo-mineral soils typically increase with flow. In saturated peat soils, both high and low flows are through an organic layer where DOC is produced. Therefore, DOC in stream water draining peat may not increase in response to changes in flow as there is no switch in flow path between a mineral and organic layer. To verify this, we conducted a high-resolution monitoring study of soil and stream water at an upland peat catchment in northern England. Our data showed a strong positive correlation between DOC concentrations at -1 and -5 cm depth and stream water, and weaker correlations between concentrations at -20 to -50 cm depth and stream water. Although near surface organic material appears to be the key source of stream water DOC in both peat and organo-mineral soils, we observed a negative correlation between stream flow and DOC concentrations instead of a positive correlation as DOC released from organic layers during low and high flow was diluted by rainfall. The differences in DOC transport processes between peat and organo-mineral soils have different implications for our understanding of long-term changes in DOC exports. While increased rainfall may cause an increase in DOC flux from peat due to an increase in water volume, it may cause a decrease in concentrations. This response is contrary to expected changes in DOC exports from organo-mineral soils, where increase rainfall is likely to result in an increase in flux and concentration.


Asunto(s)
Carbono/análisis , Monitoreo del Ambiente , Compuestos Orgánicos/análisis , Contaminantes del Suelo/análisis , Movimientos del Agua , Contaminantes Químicos del Agua/análisis , Carbono/química , Carbono/metabolismo , Inglaterra , Compuestos Orgánicos/química , Contaminantes del Suelo/química , Solubilidad , Contaminantes Químicos del Agua/química
12.
Environ Pollut ; 151(1): 110-20, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17478019

RESUMEN

Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer.


Asunto(s)
Ácidos/análisis , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Compuestos Orgánicos/análisis , Estaciones del Año , Lluvia Ácida , Aniones , Cationes , Inglaterra , Agua Dulce , Concentración de Iones de Hidrógeno , Ríos , Suelo , Contaminantes del Suelo/análisis , Solubilidad , Movimientos del Agua , Contaminantes Químicos del Agua/análisis
13.
Environ Sci Technol ; 40(6): 1776-83, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16570597

RESUMEN

The relationship between dissolved organic carbon (DOC) and the acidification of soils and freshwaters by sulfate (SO4(2-)) has been a topic of great debate over the last few decades. Most interest has focused on long-term acidification. Few have considered the influence of episodic drought-induced acidification in peatlands on DOC mobility, even through the increased acidity and ionic strength associated with the oxidation of reduced sulfur to SO4(2-) are known to reduce DOC solubility. Reduced DOC concentrations during droughts have often been attributed to: (i) reduced hydrological export; (ii) physicochemical changes in the peat structure; or (iii) changes in the biological production and/or consumption of DOC. Our experimental drought simulations on peat cores showed that SO4(2-) induced acidification reduced DOC concentrations during droughts. However, the relationships between SO4(2-)/pH/ ionic strength and DOC were only apparent when the reductions in observed DOC were expressed as a fraction of the estimated DOC concentration in the absence of SO4(2-), which were derived from soil depth, temperature, and watertable data. This analysis showed that a pH fall from 4.3 to 3.5, due to a SO4(2-) rise from < 2.5 to 35 mg L(-1), caused a 60% reduction in DOC concentrations. In contrast, poor correlations were recorded between S042-/pH/ionic strength and the observed DOC data. As DOC both influences acidity and is influenced by acidity, the relative change in DOC needed to be considered to disentangle the effect of inputs of mineral acids into a system naturally dominated by variable concentrations of organic acids.


Asunto(s)
Carbono/análisis , Monitoreo del Ambiente , Compuestos Orgánicos/análisis , Sulfatos/análisis , Contaminantes Químicos del Agua/análisis , Carbono/química , Desastres , Concentración de Iones de Hidrógeno , Compuestos Orgánicos/química , Concentración Osmolar , Sulfatos/química
14.
Environ Pollut ; 143(2): 361-6, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16406625

RESUMEN

Monthly stream water calcium and Gran alkalinity concentration data from 11 sub-catchments of the Nether Beck in the English Lake District have been used to appraise the transferability of the Scottish, River Dee-based G-BASH model. Readily available riparian zone geochemistry and flow paths were used initially to predict minimum and mean stream water concentrations at the Nether Beck, based on calibration equations from the River Dee catchment data. Predicted values significantly exceeded observed values. Differences in runoff between the two areas, leading to a dilution effect in the Nether Beck, explained most of the difference between observed and predicted values. Greater acid deposition in the Lake District also reduced stream water Gran alkalinity concentrations in that area. If regional differences in precipitation, evapotranspiration and pollutant deposition are incorporated into the model, it may then be used reliably to predict catchment susceptibility to acidification over a wide regional (national) scale.


Asunto(s)
Calcio/análisis , Contaminación Ambiental/análisis , Modelos Teóricos , Contaminantes Químicos del Agua/análisis , Lluvia Ácida , Precipitación Química , Recolección de Datos , Inglaterra , Sistemas de Información Geográfica , Sedimentos Geológicos , Concentración de Iones de Hidrógeno , Ríos , Escocia , Suelo
15.
Environ Pollut ; 136(1): 63-70, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15809108

RESUMEN

Monthly data for 11 moorland streams displaying marked seasonality and spatial variation in nitrate concentrations have been used with readily available catchment characteristics to develop a method for predicting stream water nitrate concentrations throughout an upland river network in the Lake District, UK. Over a 12-month period, a simple asymmetric truncated cosine function of day number is used to describe seasonality effects on stream water nitrate concentrations. This is then adjusted to compensate for differences in seasonality effects with catchment elevation. Occurrence of greater proportions of steeper slopes (>20 degrees -40 degrees ) in individual catchments facilitated nitrate leaching, as did increased extent of occurrence of outcropping rocks. It is shown that the spatial and temporal variation in nitrate concentration through the river network studied may therefore be effectively represented by an equation which is a function of day number, % outcropping rock and % of catchment area with a >20 degrees -40 degrees slope.


Asunto(s)
Monitoreo del Ambiente/métodos , Nitratos/análisis , Ríos , Estaciones del Año , Contaminantes Químicos del Agua/análisis , Contaminantes Ambientales , Fenómenos Geológicos , Geología , Modelos Teóricos , Nitrógeno , Reino Unido , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...