Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(1): 105578, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110036

RESUMEN

In Gram-positive bacteria, cell wall polysaccharides (CWPS) play critical roles in bacterial cell wall homeostasis and bacterial interactions with their immediate surroundings. In lactococci, CWPS consist of two components: a conserved rhamnan embedded in the peptidoglycan layer and a surface-exposed polysaccharide pellicle (PSP), which are linked together to form a large rhamnose-rich CWPS (Rha-CWPS). PSP, whose structure varies from strain to strain, is a receptor for many bacteriophages infecting lactococci. Here, we examined the first two steps of PSP biosynthesis, using in vitro enzymatic tests with lipid acceptor substrates combined with LC-MS analysis, AlfaFold2 modeling of protein 3D-structure, complementation experiments, and phage assays. We show that the PSP repeat unit is assembled on an undecaprenyl-monophosphate (C55P) lipid intermediate. Synthesis is initiated by the WpsA/WpsB complex with GlcNAc-P-C55 synthase activity and the PSP precursor GlcNAc-P-C55 is then elongated by specific glycosyltransferases that vary among lactococcal strains, resulting in PSPs with diverse structures. Also, we engineered the PSP biosynthesis pathway in lactococci to obtain a chimeric PSP structure, confirming the predicted glycosyltransferase specificities. This enabled us to highlight the importance of a single sugar residue of the PSP repeat unit in phage recognition. In conclusion, our results support a novel pathway for PSP biosynthesis on a lipid-monophosphate intermediate as an extracellular modification of rhamnan, unveiling an assembly machinery for complex Rha-CWPS with structural diversity in lactococci.


Asunto(s)
Pared Celular , Lactococcus , Polisacáridos Bacterianos , Ramnosa , Proteínas Bacterianas/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Glicosiltransferasas/metabolismo , Lactococcus/clasificación , Lactococcus/citología , Lactococcus/metabolismo , Lactococcus/virología , Lípidos , Peptidoglicano/metabolismo , Polisacáridos Bacterianos/metabolismo , Conformación Proteica , Ramnosa/metabolismo , Especificidad por Sustrato , Bacteriófagos/fisiología
2.
medRxiv ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37961251

RESUMEN

Cephalosporins are the most common triggers of healthcare-associated Clostridioides difficile infections (CDI). Here, we confirm gene-level drivers of cephalosporin resistance and their roles in promoting disease. Genomic-epidemiologic analyses of 306 C. difficile isolates from a hospital surveillance program monitoring asymptomatic carriers and CDI patients identified prevalent third-generation cephalosporin resistance to ceftriaxone at >256 ug/mL in 26% of isolates. Resistance was associated with patient cephalosporin exposures 8-10 days before C. difficile detection. Genomic analyses identified variants in the mreE penicillin binding protein 2 (PBP2) associated with resistance to multiple beta-lactam classes. Transfer of variants into susceptible strain CD630 elevated resistance to first and third-generation cephalosporins. Transfer into the mouse-infective strain ATCC 43255 enabled disease when mice were exposed to 500ug/mL cefoperazone, a dose that inhibited the isogenic susceptible strain. Our findings establish roles of cephalosporins and mreE-cephalosporin-resistant variants in CDI and provide testable genetic loci for detecting resistance in patient strains.

3.
Int J Food Microbiol ; 407: 110415, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-37774633

RESUMEN

Lactococcus spp. are applied routinely in dairy fermentations and their consistent growth and associated acidification activity is critical to ensure the quality and safety of fermented dairy foods. Bacteriophages pose a significant threat to such fermentations and thus it is imperative to study how these bacteria may evade their viral predators in the relevant confined settings. Many lactococcal phages are known to specifically recognise and bind to cell wall polysaccharides (CWPSs) and particularly the phospho-polysaccharide (PSP) side chain component that is exposed on the host cell surface. In the present study, we generated derivatives of a lactococcal strain with reduced phage sensitivity to establish the mode of phage evasion. The resulting mutants were characterized using a combination of comparative genome analysis, microbiological and chemical analyses. Using these approaches, it was established that the phage-resistant derivatives incorporated mutations in genes within the cluster associated with CWPS biosynthesis resulting in growth and morphological defects that could revert when the selective pressure of phages was removed. Furthermore, the cell wall extracts of selected mutants revealed that the phage-resistant strains produced intact PSP but in significantly reduced amounts. The reduced availability of the PSP and the ability of lactococcal strains to revert rapidly to wild type growth and activity in the absence of phage pressure provides Lactococcus with the means to survive and evade phage attack.


Asunto(s)
Bacteriófagos , Lactococcus lactis , Bacteriófagos/genética , Bacteriófagos/metabolismo , Lactococcus lactis/metabolismo , Polisacáridos/análisis , Polisacáridos/química , Polisacáridos/metabolismo , Pared Celular/metabolismo , Mutación
4.
Carbohydr Res ; 531: 108898, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37453325

RESUMEN

Lactococcus cremoris and Lactococcus lactis are among the most extensively exploited species of lactic acid bacteria in dairy fermentations. The cell wall of lactococci, like other Gram-positive bacteria, possesses a thick peptidoglycan layer, which may incorporate cell wall polysaccharides (CWPS), wall teichoic acids (WTA), and/or lipoteichoic acids (LTA). In this study, we report the isolation, purification and structural analysis of the carbohydrate moieties of glycolipids (GL) and LTA of the L. cremoris model strain 3107. Chemical structures of these compounds were studied by chemical methods, NMR spectroscopy and positive and negative mode ESI MS. We found that the LTA of strain 3107 is composed of short chains of 1,3-polyglycerol phosphate (PGP), attached to O-6 of the non-reducing glucose of the kojibiose-Gro backbone of the glycolipid anchor. Extraction of cells with cold TCA afforded the detection of 1,3-glycerol phosphate chains randomly substituted at O-2 of glycerol by D-Ala. Unlike the LTA of L. lactis strains studied to date, the PGP backbone of the LTA of L. cremoris 3107 did not carry any glycosyl substitution. The deacylated glycolipid fraction contained the free kojibiose-Gro oligosaccharide, identical to the backbone of the GL anchor of LTA, and its shorter fragment α-Glc-1-Gro. These OS may have originated from the GL precursors of LTA biosynthesis.


Asunto(s)
Glucolípidos , Lactococcus lactis , Ácidos Teicoicos/química , Glicerol , Lactococcus lactis/química , Lipopolisacáridos/química , Fosfatos
5.
Appl Environ Microbiol ; 89(6): e0210322, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37222606

RESUMEN

Lactococcus lactis and Lactococcus cremoris are Gram-positive lactic acid bacteria widely used as starter in milk fermentations. Lactococcal cells are covered with a polysaccharide pellicle (PSP) that was previously shown to act as the receptor for numerous bacteriophages of the Caudoviricetes class. Thus, mutant strains lacking PSP are phage resistant. However, because PSP is a key cell wall component, PSP-negative mutants exhibit dramatic alterations of cell shape and severe growth defects, which limit their technological value. In the present study, we isolated spontaneous mutants with improved growth, from L. cremoris PSP-negative mutants. These mutants grow at rates similar to the wild-type strain, and based on transmission electron microscopy analysis, they exhibit improved cell morphology compared to their parental PSP-negative mutants. In addition, the selected mutants maintain their phage resistance. Whole-genome sequencing of several such mutants showed that they carried a mutation in pbp2b, a gene encoding a penicillin-binding protein involved in peptidoglycan biosynthesis. Our results indicate that lowering or turning off PBP2b activity suppresses the requirement for PSP and ameliorates substantially bacterial fitness and morphology. IMPORTANCE Lactococcus lactis and Lactococcus cremoris are widely used in the dairy industry as a starter culture. As such, they are consistently challenged by bacteriophage infections which may result in reduced or failed milk acidification with associated economic losses. Bacteriophage infection starts with the recognition of a receptor at the cell surface, which was shown to be a cell wall polysaccharide (the polysaccharide pellicle [PSP]) for the majority of lactococcal phages. Lactococcal mutants devoid of PSP exhibit phage resistance but also reduced fitness, since their morphology and division are severely impaired. Here, we isolated spontaneous, food-grade non-PSP-producing L. cremoris mutants resistant to bacteriophage infection with a restored fitness. This study provides an approach to isolate non-GMO phage-resistant L. cremoris and L. lactis strains, which can be applied to strains with technological functionalities. Also, our results highlight for the first time the link between peptidoglycan and cell wall polysaccharide biosynthesis.


Asunto(s)
Bacteriófagos , Lactococcus lactis , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Peptidoglicano/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Polisacáridos/metabolismo , Mutación , Proteínas Portadoras/metabolismo
6.
Elife ; 122023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37042660

RESUMEN

Metazoans establish mutually beneficial interactions with their resident microorganisms. However, our understanding of the microbial cues contributing to host physiology remains elusive. Previously, we identified a bacterial machinery encoded by the dlt operon involved in Drosophila melanogaster's juvenile growth promotion by Lactiplantibacillus plantarum. Here, using crystallography combined with biochemical and cellular approaches, we investigate the physiological role of an uncharacterized protein (DltE) encoded by this operon. We show that lipoteichoic acids (LTAs) but not wall teichoic acids are D-alanylated in Lactiplantibacillus plantarumNC8 cell envelope and demonstrate that DltE is a D-Ala carboxyesterase removing D-Ala from LTA. Using the mutualistic association of L. plantarumNC8 and Drosophila melanogaster as a symbiosis model, we establish that D-alanylated LTAs (D-Ala-LTAs) are direct cues supporting intestinal peptidase expression and juvenile growth in Drosophila. Our results pave the way to probing the contribution of D-Ala-LTAs to host physiology in other symbiotic models.


Asunto(s)
Fenómenos Biológicos , Drosophila , Animales , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ácidos Teicoicos/metabolismo , Señales (Psicología) , Lipopolisacáridos/metabolismo
7.
Science ; 379(6634): 826-833, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36821686

RESUMEN

The intestinal microbiota is known to influence postnatal growth. We previously found that a strain of Lactiplantibacillus plantarum (strain LpWJL) buffers the adverse effects of chronic undernutrition on the growth of juvenile germ-free mice. Here, we report that LpWJL sustains the postnatal growth of malnourished conventional animals and supports both insulin-like growth factor-1 (IGF-1) and insulin production and activity. We have identified cell walls isolated from LpWJL, as well as muramyl dipeptide and mifamurtide, as sufficient cues to stimulate animal growth despite undernutrition. Further, we found that NOD2 is necessary in intestinal epithelial cells for LpWJL-mediated IGF-1 production and for postnatal growth promotion in malnourished conventional animals. These findings indicate that, coupled with renutrition, bacteria cell walls or purified NOD2 ligands have the potential to alleviate stunting.


Asunto(s)
Microbioma Gastrointestinal , Crecimiento , Intestinos , Lactobacillaceae , Desnutrición , Proteína Adaptadora de Señalización NOD2 , Animales , Ratones , Pared Celular/química , Células Epiteliales/microbiología , Células Epiteliales/fisiología , Microbioma Gastrointestinal/fisiología , Vida Libre de Gérmenes , Trastornos del Crecimiento/fisiopatología , Trastornos del Crecimiento/terapia , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/fisiología , Intestinos/microbiología , Intestinos/fisiología , Lactobacillaceae/fisiología , Desnutrición/fisiopatología , Desnutrición/terapia , Proteína Adaptadora de Señalización NOD2/metabolismo , Crecimiento/efectos de los fármacos , Crecimiento/fisiología , Acetilmuramil-Alanil-Isoglutamina/farmacología , Acetilmuramil-Alanil-Isoglutamina/uso terapéutico
8.
Microb Biotechnol ; 15(12): 2875-2889, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36259418

RESUMEN

The first step in phage infection is the recognition of, and adsorption to, a receptor located on the host cell surface. This reversible host adsorption step is commonly followed by an irreversible event, which involves phage DNA delivery or release into the bacterial cytoplasm. The molecular components that trigger this latter event are unknown for most phages of Gram-positive bacteria. In the current study, we present a comparative genome analysis of three mutants of Lactococcus cremoris 3107, which are resistant to the P335 group phage TP901-1 due to mutations that affect TP901-1 DNA release. Through genetic complementation and phage infection assays, a predicted lactococcal three-component glycosylation system (TGS) was shown to be required for TP901-1 infection. Major cell wall saccharidic components were analysed, but no differences were found. However, heterologous gene expression experiments indicate that this TGS is involved in the glucosylation of a cell envelope-associated component that triggers TP901-1 DNA release. To date, a saccharide modification has not been implicated in the DNA delivery process of a Gram-positive infecting phage.


Asunto(s)
Bacteriófagos , Lactococcus lactis , Siphoviridae , Siphoviridae/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , ADN/metabolismo
9.
J Biol Chem ; 298(10): 102488, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36113580

RESUMEN

Rhamnose-rich cell wall polysaccharides (Rha-CWPSs) have emerged as crucial cell wall components of numerous Gram-positive, ovoid-shaped bacteria-including streptococci, enterococci, and lactococci-of which many are of clinical or biotechnological importance. Rha-CWPS are composed of a conserved polyrhamnose backbone with side-chain substituents of variable size and structure. Because these substituents contain phosphate groups, Rha-CWPS can also be classified as polyanionic glycopolymers, similar to wall teichoic acids, of which they appear to be functional homologs. Recent advances have highlighted the critical role of these side-chain substituents in bacterial cell growth and division, as well as in specific interactions between bacteria and infecting bacteriophages or eukaryotic hosts. Here, we review the current state of knowledge on the structure and biosynthesis of Rha-CWPS in several ovoid-shaped bacterial species. We emphasize the role played by multicomponent transmembrane glycosylation systems in the addition of side-chain substituents of various sizes as extracytoplasmic modifications of the polyrhamnose backbone. We provide an overview of the contribution of Rha-CWPS to cell wall architecture and biogenesis and discuss current hypotheses regarding their importance in the cell division process. Finally, we sum up the critical roles that Rha-CWPS can play as bacteriophage receptors or in escaping host defenses, roles that are mediated mainly through their side-chain substituents. From an applied perspective, increased knowledge of Rha-CWPS can lead to advancements in strategies for preventing phage infection of lactococci and streptococci in food fermentation and for combating pathogenic streptococci and enterococci.


Asunto(s)
Bacteriófagos , Pared Celular , Bacterias Grampositivas , Pared Celular/química , Bacterias Grampositivas/química , Bacterias Grampositivas/citología , Polisacáridos/química , Ramnosa , Ácidos Teicoicos/química , División Celular/fisiología
10.
Int J Mol Sci ; 23(14)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35886967

RESUMEN

The human gut symbiont Lacticaseibacillus (L.) casei (previously Lactobacillus casei) is under intense research due to its wide range of immunomodulatory effects on the human host. Dendritic cells (DCs) are crucial players in the direct and indirect communication with lactobacilli in the gastrointestinal tract. Here, we demonstrate that human monocyte-derived DCs (moDCs) are able to engulf L. casei BL23, in which the intact bacterial cell wall and morphology have a key role. The absence of the bacterial cell-wall-degrading enzyme, Lc-p75, in L. casei cells causes remarkable morphological changes, which have important consequences in the phagocytosis of L. casei by moDCs. Our results showed that the Lc-p75 mutation induced defective internalization and impaired proinflammatory and T-cell-polarizing cytokine secretion by bacteria-exposed moDCs. The T helper (Th) 1 and Th17 cell activating capacity of moDCs induced by the mutant L. casei was consequently reduced. Moreover, inhibition of the phagocytosis of wild-type bacteria showed similar results. Taken together, these data suggested that formation of short bacterial chains helps to exert the potent immunomodulatory properties of L. casei BL23.


Asunto(s)
Células Dendríticas , Lacticaseibacillus casei , N-Acetil Muramoil-L-Alanina Amidasa , Células Dendríticas/inmunología , Humanos , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/inmunología , Lacticaseibacillus casei/fisiología , Monocitos/inmunología , N-Acetil Muramoil-L-Alanina Amidasa/biosíntesis , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/inmunología , Fagocitosis
11.
Sci Rep ; 12(1): 13133, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907949

RESUMEN

Teichoic acids (TA) are crucial for the homeostasis of the bacterial cell wall as well as their developmental behavior and interplay with the environment. TA can be decorated by different modifications, modulating thus their biochemical properties. One major modification consists in the esterification of TA by D-alanine, a process known as D-alanylation. TA D-alanylation is performed by the Dlt pathway, which starts in the cytoplasm and continues extracellularly after D-Ala transportation through the membrane. In this study, we combined structural biology and in vivo approaches to dissect the cytoplasmic steps of this pathway in Lactiplantibacillus plantarum, a bacterial species conferring health benefits to its animal host. After establishing that AcpS, DltB, DltC1 and DltA are required for the promotion of Drosophila juvenile growth under chronic undernutrition, we solved their crystal structure and/or used NMR and molecular modeling to study their interactions. Our work demonstrates that the suite of interactions between these proteins is ordered with a conserved surface of DltC1 docking sequentially AcpS, DltA and eventually DltB. Altogether, we conclude that DltC1 acts as an interaction hub for all the successive cytoplasmic steps of the TA D-alanylation pathway.


Asunto(s)
Proteínas Bacterianas , Ácidos Teicoicos , Alanina/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Ácidos Teicoicos/metabolismo
12.
Front Microbiol ; 12: 760253, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721369

RESUMEN

A mutant of Listeria monocytogenes ScottA with a transposon in the 5' untranslated region of the asnB gene was identified to be hypersensitive to the antimicrobial t-cinnamaldehyde. Here, we report the functional characterization of AsnB in peptidoglycan (PG) modification and intracellular infection. While AsnB of Listeria is annotated as a glutamine-dependent asparagine synthase, sequence alignment showed that this protein is closely related to a subset of homologs that catalyze the amidation of meso-diaminopimelic acid (mDAP) residues in the peptidoglycan of other bacterial species. Structural analysis of peptidoglycan from an asnB mutant, compared to that of isogenic wild-type (WT) and complemented mutant strains, confirmed that AsnB mediates mDAP amidation in L. monocytogenes. Deficiency in mDAP amidation caused several peptidoglycan- and cell surface-related phenotypes in the asnB mutant, including formation of shorter but thicker cells, susceptibility to lysozyme, loss of flagellation and motility, and a strong reduction in biofilm formation. In addition, the mutant showed reduced invasion of human epithelial JEG-3 and Caco-2 cells. Analysis by immunofluorescence microscopy revealed that asnB inactivation abrogated the proper display at the listerial surface of the invasion protein InlA, which normally gets cross-linked to mDAP via its LPXTG motif. Together, this work shows that AsnB of L. monocytogenes, like several of its homologs in related Gram-positive bacteria, mediates the amidation of mDAP residues in the peptidoglycan and, in this way, affects several cell wall and cell surface-related properties. It also for the first time implicates the amidation of peptidoglycan mDAP residues in cell wall anchoring of InlA and in bacterial virulence.

14.
mBio ; 12(3)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006648

RESUMEN

Cell growth and division require a balance between synthesis and hydrolysis of the peptidoglycan (PG). Inhibition of PG synthesis or uncontrolled PG hydrolysis can be lethal for the cells, making it imperative to control peptidoglycan hydrolase (PGH) activity. The synthesis or activity of several key enzymes along the PG biosynthetic pathway is controlled by the Hanks-type serine/threonine kinases (STKs). In Gram-positive bacteria, inactivation of genes encoding STKs is associated with a range of phenotypes, including cell division defects and changes in cell wall metabolism, but only a few kinase substrates and associated mechanisms have been identified. We previously demonstrated that STK-PrkC plays an important role in cell division, cell wall metabolism, and resistance to antimicrobial compounds in the human enteropathogen Clostridioides difficile In this work, we characterized a PG hydrolase, CwlA, which belongs to the NlpC/P60 family of endopeptidases and hydrolyses cross-linked PG between daughter cells to allow cell separation. We identified CwlA as the first PrkC substrate in C. difficile We demonstrated that PrkC-dependent phosphorylation inhibits CwlA export, thereby controlling hydrolytic activity in the cell wall. High levels of CwlA at the cell surface led to cell elongation, whereas low levels caused cell separation defects. Thus, we provided evidence that the STK signaling pathway regulates PGH homeostasis to precisely control PG hydrolysis during cell division.IMPORTANCE Bacterial cells are encased in a PG exoskeleton that helps to maintain cell shape and confers physical protection. To allow bacterial growth and cell separation, PG needs to be continuously remodeled by hydrolytic enzymes that cleave PG at critical sites. How these enzymes are regulated remains poorly understood. We identify a new PG hydrolase involved in cell division, CwlA, in the enteropathogen C. difficile Lack or accumulation of CwlA at the bacterial surface is responsible for a division defect, while its accumulation in the absence of PrkC also increases susceptibility to antimicrobial compounds targeting the cell wall. CwlA is a substrate of the kinase PrkC in C. difficile PrkC-dependent phosphorylation controls the export of CwlA, modulating its levels and, consequently, its activity in the cell wall. This work provides a novel regulatory mechanism by STK in tightly controlling protein export.


Asunto(s)
Proteínas Bacterianas/metabolismo , División Celular/genética , Clostridioides difficile/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Bacterianas/genética , División Celular/fisiología , Clostridioides difficile/enzimología , Clostridioides difficile/genética , Peptidoglicano/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética
15.
mBio ; 12(2)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33832972

RESUMEN

The broadly conserved cyclic di-AMP (c-di-AMP) is a conditionally essential bacterial second messenger. The pool of c-di-AMP is fine-tuned through diadenylate cyclase and phosphodiesterase activities, and direct binding of c-di-AMP to proteins and riboswitches allows the regulation of a broad spectrum of cellular processes. c-di-AMP has a significant impact on intrinsic ß-lactam antibiotic resistance in Gram-positive bacteria; however, the reason for this is currently unclear. In this work, genetic studies revealed that suppressor mutations that decrease the activity of the potassium (K+) importer KupB or the glutamine importer GlnPQ restore cefuroxime (CEF) resistance in diadenylate cyclase (cdaA) mutants of Lactococcus lactis Metabolite analyses showed that glutamine is imported by GlnPQ and then rapidly converted to glutamate, and GlnPQ mutations or c-di-AMP negatively affects the pools of the most abundant free amino acids (glutamate and aspartate) during growth. In a high-c-di-AMP mutant, GlnPQ activity could be increased by raising the internal K+ level through the overexpression of a c-di-AMP-insensitive KupB variant. These results demonstrate that c-di-AMP reduces GlnPQ activity and, therefore, the level of the major free anions in L. lactis through its inhibition of K+ import. Excessive ion accumulation in cdaA mutants results in greater spontaneous cell lysis under hypotonic conditions, while CEF-resistant suppressors exhibit reduced cell lysis and lower osmoresistance. This work demonstrates that the overaccumulation of major counter-ion osmolyte pools in c-di-AMP-defective mutants of L. lactis causes cefuroxime sensitivity.IMPORTANCE The bacterial second messenger cyclic di-AMP (c-di-AMP) is a global regulator of potassium homeostasis and compatible solute uptake in many Gram-positive bacteria, making it essential for osmoregulation. The role that c-di-AMP plays in ß-lactam resistance, however, is unclear despite being first identified a decade ago. Here, we demonstrate that the overaccumulation of potassium or free amino acids leads to cefuroxime sensitivity in Lactococcus lactis mutants partially defective in c-di-AMP synthesis. It was shown that c-di-AMP negatively affects the levels of the most abundant free amino acids (glutamate and aspartate) in L. lactis Regulation of these major free anions was found to occur via the glutamine transporter GlnPQ, whose activity increased in response to intracellular potassium levels, which are under c-di-AMP control. Evidence is also presented showing that they are major osmolytes that enhance osmoresistance and cell lysis. The regulatory reach of c-di-AMP can be extended to include the main free anions in bacteria.


Asunto(s)
Antibacterianos/farmacología , Cefuroxima/farmacología , AMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Lactococcus lactis/efectos de los fármacos , Lactococcus lactis/genética , Aminoácidos/metabolismo , Proteínas Bacterianas/metabolismo , Transporte Biológico , Lactococcus lactis/metabolismo , Potasio/metabolismo , Sistemas de Mensajero Secundario
16.
Sci Rep ; 11(1): 4846, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649417

RESUMEN

Lactic acid bacteria, in particular Lactococcus lactis, are widely used in the food industry, for the control and/or the protection of the manufacturing processes of fermented food. While L. lactis has been reported to form compact and uniform biofilms it was recently shown that certain strains able to display pili at their surface form more complex biofilms exhibiting heterogeneous and aerial structures. As the impact of those biofilm structures on the biomechanical properties of the biofilms is poorly understood, these were investigated using AFM force spectroscopy and imaging. Three types of strains were used i.e., a control strain devoid of pili and surface mucus-binding protein, a strain displaying pili but no mucus-binding proteins and a strain displaying both pili and a mucus-binding protein. To identify potential correlations between the nanomechanical measurements and the biofilm architecture, 24-h old biofilms were characterized by confocal laser scanning microscopy. Globally the strains devoid of pili displayed smoother and stiffer biofilms (Young Modulus of 4-100 kPa) than those of piliated strains (Young Modulus around 0.04-0.1 kPa). Additional display of a mucus-binding protein did not affect the biofilm stiffness but made the biofilm smoother and more compact. Finally, we demonstrated the role of pili in the biofilm cohesiveness by monitoring the homotypic adhesion of bacteria to the biofilm surface. These results will help to understand the role of pili and mucus-binding proteins withstanding external forces.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Fimbrias Bacterianas/metabolismo , Lactococcus lactis/fisiología , Microbiología de Alimentos , Industria de Procesamiento de Alimentos , Moco
17.
Mol Microbiol ; 114(4): 582-596, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32515029

RESUMEN

The biosynthetic machinery for cell wall polysaccharide (CWPS) production in lactococci is encoded by a large gene cluster, designated cwps. This locus displays considerable variation among lactococcal genomes, previously prompting a classification into three distinct genotypes (A-C). In the present study, the cwps loci of 107 lactococcal strains were compared, revealing the presence of a fourth cwps genotype (type D). Lactococcal CWPSs are comprised of two saccharidic structures: a peptidoglycan-embedded rhamnan backbone polymer to which a surface-exposed, poly/oligosaccharidic side-chain is covalently linked. Chemical structures of the side-chain of seven lactococcal strains were elucidated, highlighting their diverse and strain-specific nature. Furthermore, a link between cwps genotype and chemical structure was derived based on the number of glycosyltransferase-encoding genes in the cwps cluster and the presence of conserved genes encoding the presumed priming glycosyltransferase. This facilitates predictions of several structural features of lactococcal CWPSs including (a) whether the CWPS possesses short oligo/polysaccharide side-chains, (b) the number of component monosaccharides in a given CWPS structure, (c) the order of monosaccharide incorporation into the repeating units of the side-chain (for C-type strains), (d) the presence of Galf and phosphodiester bonds in the side-chain, and (e) the presence of glycerol phosphate substituents in the side-chain.


Asunto(s)
Pared Celular/genética , Lactococcus/genética , Polisacáridos Bacterianos/genética , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Glicosiltransferasas/metabolismo , Lactococcus/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Familia de Multigenes/genética , Peptidoglicano/metabolismo , Polisacáridos/metabolismo , Polisacáridos Bacterianos/metabolismo , Polisacáridos Bacterianos/fisiología
18.
FEMS Microbiol Rev ; 44(5): 538-564, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32495833

RESUMEN

Lactic acid bacteria (LAB) encompasses industrially relevant bacteria involved in food fermentations as well as health-promoting members of our autochthonous microbiota. In the last years, we have witnessed major progresses in the knowledge of the biology of their cell wall, the outermost macrostructure of a Gram-positive cell, which is crucial for survival. Sophisticated biochemical analyses combined with mutation strategies have been applied to unravel biosynthetic routes that sustain the inter- and intra-species cell wall diversity within LAB. Interplay with global cell metabolism has been deciphered that improved our fundamental understanding of the plasticity of the cell wall during growth. The cell wall is also decisive for the antimicrobial activity of many bacteriocins, for bacteriophage infection and for the interactions with the external environment. Therefore, genetic circuits involved in monitoring cell wall damage have been described in LAB, together with a plethora of defence mechanisms that help them to cope with external threats and adapt to harsh conditions. Since the cell wall plays a pivotal role in several technological and health-promoting traits of LAB, we anticipate that this knowledge will pave the way for the future development and extended applications of LAB.


Asunto(s)
Pared Celular/metabolismo , Homeostasis/fisiología , Lactobacillales/metabolismo , Proteínas Bacterianas/genética , Lactobacillales/genética
19.
ACS Appl Mater Interfaces ; 12(19): 21411-21423, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32314572

RESUMEN

Cell surface proteins of Gram-positive bacteria play crucial roles in their adhesion to abiotic and biotic surfaces. Pili are long and flexible proteinaceous filaments known to enhance bacterial initial adhesion. They promote surface colonization and are thus considered as essential factors in biofilm cohesion. Our hypothesis is that pili mediate interactions between cells and may thereby directly affect biofilm formation. In this study, we use single-cell force spectroscopy (SCFS) to quantify the force of the homotypic pili interactions between individual bacterial cells, using different Lactococcus lactis strains producing pili or not as model bacteria. Moreover the force-distance curves were analyzed to determine the physical and nanomechanical properties of L. lactis pili. The results for pili-devoided strains showed a weak adhesion between cells (adhesion forces and work in the range of 100 pN and 7 × 10-18 J, respectively). On the contrary, the piliated strains showed high adhesion levels with adhesion forces and adhesion work over 200 pN and 50 × 10-18 J, respectively. The force-extension curves showed multiple adhesion events, typical of the unfolding of macromolecules. These unfolding force peaks were fitted using the physical worm-like chain model to get fundamental knowledge on the pili nanomechanical properties. In addition, SCFS applied to a L. lactis isolate expressing both pili and mucus-binding protein at its surface and two derivative mutants revealed the capacity of pili to interact with other surface proteins including mucus-binding proteins. This study demonstrates that pili are involved in L. lactis homotypic interactions and thus can influence biofilm structuring.


Asunto(s)
Adhesión Bacteriana/fisiología , Comunicación Celular/fisiología , Fimbrias Bacterianas/metabolismo , Lactococcus lactis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Microscopía de Fuerza Atómica/métodos , Análisis de la Célula Individual/métodos
20.
mBio ; 11(2)2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345640

RESUMEN

All enterococci produce a complex polysaccharide called the enterococcal polysaccharide antigen (EPA). This polymer is required for normal cell growth and division and for resistance to cephalosporins and plays a critical role in host-pathogen interaction. The EPA contributes to host colonization and is essential for virulence, conferring resistance to phagocytosis during the infection. Recent studies revealed that the "decorations" of the EPA polymer, encoded by genetic loci that are variable between isolates, underpin the biological activity of this surface polysaccharide. In this work, we investigated the structure of the EPA polymer produced by the high-risk enterococcal clonal complex Enterococcus faecalis V583. We analyzed purified EPA from the wild-type strain and a mutant lacking decorations and elucidated the structure of the EPA backbone and decorations. We showed that the rhamnan backbone of EPA is composed of a hexasaccharide repeat unit of C2- and C3-linked rhamnan chains, partially substituted in the C3 position by α-glucose (α-Glc) and in the C2 position by ß-N-acetylglucosamine (ß-GlcNAc). The so-called "EPA decorations" consist of phosphopolysaccharide chains corresponding to teichoic acids covalently bound to the rhamnan backbone. The elucidation of the complete EPA structure allowed us to propose a biosynthetic pathway, a first essential step toward the design of antimicrobials targeting the synthesis of this virulence factor.IMPORTANCE Enterococci are opportunistic pathogens responsible for hospital- and community-acquired infections. All enterococci produce a surface polysaccharide called EPA (enterococcal polysaccharide antigen) required for biofilm formation, antibiotic resistance, and pathogenesis. Despite the critical role of EPA in cell growth and division and as a major virulence factor, no information is available on its structure. Here, we report the complete structure of the EPA polymer produced by the model strain E. faecalis V583. We describe the structure of the EPA backbone, made of a rhamnan hexasaccharide substituted by Glc and GlcNAc residues, and show that teichoic acids are covalently bound to this rhamnan chain, forming the so-called "EPA decorations" essential for host colonization and pathogenesis. This report represents a key step in efforts to identify the structural properties of EPA that are essential for its biological activity and to identify novel targets to develop preventive and therapeutic approaches against enterococci.


Asunto(s)
Antígenos Bacterianos/química , Enterococcus faecalis/metabolismo , Polisacáridos/química , Antígenos Bacterianos/metabolismo , Desoxiazúcares/química , Desoxiazúcares/metabolismo , Humanos , Mananos/química , Mananos/metabolismo , Polisacáridos/metabolismo , Ácidos Teicoicos/química , Ácidos Teicoicos/metabolismo , Enterococos Resistentes a la Vancomicina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...