Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Biol Regul ; 78: 100758, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33022466

RESUMEN

The epidermal growth factor receptor (EGFR) interacts with various downstream molecules including phospholipase C (PLC)/protein kinase C (PKC), Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/GSK-3, Jak/STAT and others. Often these pathways are deregulated in human malignancies such as breast cancer. Various therapeutic approaches to inhibit the activity of EGFR family members including small molecule inhibitors and monoclonal antibodies (MoAb) have been developed. A common problem with cancer treatments is the development of drug-resistance. We examined the effects of a conditionally-activated EGFR (v-Erb-B:ER) on the resistance of breast cancer cells to commonly used chemotherapeutic drugs such as doxorubicin, daunorubicin, paclitaxel, cisplatin and 5-flurouracil as well as ionizing radiation (IR). v-Erb-B is similar to the EGFR-variant EGFRvIII, which is expressed in various cancers including breast, brain, prostate. Both v-Erb-B and EGFRvIII encode the EGFR kinase domain but lack key components present in the extracellular domain of EGFR which normally regulate its activity and ligand-dependence. The v-Erb-B oncogene was ligated to the hormone binding domain of the estrogen receptor (ER) which results in regulation of the activity of the v-Erb-ER construct by addition of either estrogen (E2) or 4-hydroxytamoxifen (4HT) to the culture media. Introduction of the v-Erb-B:ER construct into the MCF-7 breast cancer cell line increased the resistance to the cells to various chemotherapeutic drugs, hormonal-based therapeutics and IR. These results point to the important effects that aberrant expression of EGFR kinase domain can have on therapeutic resistance.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos , Transducción de Señal , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Receptores ErbB/metabolismo , Femenino , Humanos
2.
Aging (Albany NY) ; 12(11): 10194-10210, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32492656

RESUMEN

BACKGROUND: TP53 plays critical roles in sensitivity to chemotherapy, and aging. Collagen is very important in aging. The molecular structure and biochemical properties of collagen changes during aging. The discoidin domain receptor (DDR1) is regulated in part by collagen. Elucidating the links between TP53 and DDR1 in chemosensitivity and aging could improve therapies against cancer and aging. RESULTS: Restoration of WT-TP53 activity resulted in increased sensitivity to chemotherapeutic drugs and elevated expression of key components of the Raf/MEK/ERK, PI3K/Akt and DDR1 pathways. DDR1 could modulate the levels of Raf/MEK/ERK and PI3K/Akt pathways as well as sensitize the cells to chemotherapeutic drugs. In contrast, suppression of WT TP53 with a dominant negative (DN) TP53 gene, suppressed DDR1 protein levels and increased their chemoresistance. CONCLUSION: Restoration of WT TP53 activity or increased expression of the anti-aging DDR1 collagen receptor can result in enhanced sensitivity to chemotherapeutic drugs. Our innovative studies indicate the important links between WT TP53 and DDR1 which can modulate Raf/MEK/ERK and PI3K/Akt signaling as well as chemosensitivity and aging. METHODS: We investigated the roles of wild type (WT) and mutant TP53 on drug sensitivity of prostate cancer cells and the induction of Raf/MEK/ERK, PI3K/Akt and DDR1 expression and chemosensitivity.


Asunto(s)
Antineoplásicos/farmacología , Receptor con Dominio Discoidina 1/metabolismo , Resistencia a Antineoplásicos/genética , Neoplasias de la Próstata/tratamiento farmacológico , Proteína p53 Supresora de Tumor/metabolismo , Envejecimiento/genética , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Colágeno/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteína p53 Supresora de Tumor/genética , Quinasas raf/metabolismo
3.
Adv Biol Regul ; 69: 43-62, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29861174

RESUMEN

Neutrophil gelatinase-associated lipocalin (NGAL a.k.a lipocalin 2, lnc2) is a secreted protein which can form a complex with matrix metalloproteinase-9 (MMP9). This MMP9/NGAL complex has been associated with metastasis. MMP9 and NGAL are detected in the urine of patients afflicted with many different types of cancer, including prostate cancer. The effects of p53, NF-κB and the androgen receptor (AR) on the expression of NGAL was examined in four prostate cancer cell lines. Prostate cancer cell lines that are AR negative and expressed either mutant or no p53 (DU145 and PC3) displayed higher levels of NGAL expression compared to the prostate cancer cell lines (LNCaP and 22Rv-1) which are AR positive and express wild type (WT) p53. Introduction of WT-p53 into the PC3 prostate cancer cell line, resulted in reduction of the levels of NGAL expression. Conversely, introduction of dominant negative (DN) p53 or a retroviral construct expressing NF-κB into LNCaP cells increased NGAL expression. NGAL expression had functional effects on the ability of the cells to form colonies in soft agar. Whereas suppression of WT-53 in LNCaP cells increased NGAL expression, the introduction of WT-p53 suppressed NGAL transcription activity in PC3 prostate cells which normally express high level of NGAL. NF-κB and p53 were determined to regulate NGAL expression by positive and negative mechanisms, respectively. Our data indicate that prostate cancer growth, progression and sensitivity to chemotherapeutic drugs are regulated in part by NGAL and may involve complex interactions between NGAL, MMP9, NF-κB and p53.


Asunto(s)
FN-kappa B/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , FN-kappa B/genética , Neoplasias de la Próstata/genética , Receptores Androgénicos/genética
4.
Adv Biol Regul ; 60: 64-87, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26525204

RESUMEN

Approximately one in six men will be diagnosed with some form of prostate cancer in their lifetime. Over 250,000 men worldwide die annually due to complications from prostate cancer. While advancements in prostate cancer screening and therapies have helped in lowering this statistic, better tests and more effective therapies are still needed. This review will summarize the novel roles of the androgen receptor (AR), epidermal growth factor receptor (EGFR), the EGFRvIII variant, TP53, long-non-coding RNAs (lncRNAs), microRNAs (miRs), NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, (NGAL), matrix metalloproteinase-9 (MMP-9), the tumor microenvironment and cancer stem cells (CSC) have on the diagnosis, development and treatment of prostate cancer.


Asunto(s)
Receptores ErbB/metabolismo , Gelatinasas/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , FN-kappa B/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Receptores ErbB/genética , Gelatinasas/genética , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/genética , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/genética , Neutrófilos/enzimología , Neoplasias de la Próstata/genética , Receptores Androgénicos/genética , Translocación Genética , Proteína p53 Supresora de Tumor/genética
5.
J Virol ; 90(5): 2639-52, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26699641

RESUMEN

UNLABELLED: High-risk human papillomavirus 31 (HPV31)-positive cells exhibit constitutive activation of the ATM-dependent DNA damage response (DDR), which is necessary for productive viral replication. In response to DNA double-strand breaks (DSBs), ATM activation leads to DNA repair through homologous recombination (HR), which requires the principal recombinase protein Rad51, as well as BRCA1. Previous studies from our lab demonstrated that Rad51 and BRCA1 are expressed at high levels in HPV31-positive cells and localize to sites of viral replication. These results suggest that HPV may utilize ATM activity to increase HR activity as a means to facilitate viral replication. In this study, we demonstrate that high-risk HPV E7 expression alone is sufficient for the increase in Rad51 and BRCA1 protein levels. We have found that this increase occurs, at least in part, at the level of transcription. Studies analyzing protein stability indicate that HPV may also protect Rad51 and BRCA1 from turnover, contributing to the overall increase in cellular levels. We also demonstrate that Rad51 is bound to HPV31 genomes, with binding increasing per viral genome upon productive replication. We have found that depletion of Rad51 and BRCA1, as well as inhibition of Rad51's recombinase activity, abrogates productive viral replication upon differentiation. Overall, these results indicate that Rad51 and BRCA1 are required for the process of HPV31 genome amplification and suggest that productive replication occurs in a manner dependent upon recombination. IMPORTANCE: Productive replication of HPV31 requires activation of an ATM-dependent DNA damage response, though how ATM activity contributes to replication is unclear. Rad51 and BRCA1 play essential roles in repair of double-strand breaks, as well as the restart of stalled replication forks through homologous recombination (HR). Given that ATM activity is required to initiate HR repair, coupled with the requirement of Rad51 and BRCA1 for productive viral replication, our findings suggest that HPV may utilize ATM activity to ensure localization of recombination factors to productively replicating viral genomes. The finding that E7 increases the levels of Rad51 and BRCA1 suggests that E7 contributes to productive replication by providing DNA repair factors required for viral DNA synthesis. Our studies not only imply a role for recombination in the regulation of productive HPV replication but provide further insight into how HPV manipulates the DDR to facilitate the productive phase of the viral life cycle.


Asunto(s)
Proteína BRCA1/metabolismo , Interacciones Huésped-Patógeno , Papillomavirus Humano 31/fisiología , Recombinasa Rad51/metabolismo , Replicación Viral , Células Cultivadas , Células Epiteliales/virología , Fibroblastos/virología , Regulación de la Expresión Génica , Papillomavirus Humano 31/crecimiento & desarrollo , Humanos , Proteínas E7 de Papillomavirus/metabolismo , Reparación del ADN por Recombinación , Transcripción Genética , Regulación hacia Arriba
6.
J Virol ; 88(15): 8528-44, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24850735

RESUMEN

UNLABELLED: Activation of the ATM (ataxia telangiectasia-mutated kinase)-dependent DNA damage response (DDR) is necessary for productive replication of human papillomavirus 31 (HPV31). We previously found that DNA repair and homologous recombination (HR) factors localize to sites of HPV replication, suggesting that ATM activity is required to recruit factors to viral genomes that can productively replicate viral DNA in a recombination-dependent manner. The Mre11-Rad50-Nbs1 (MRN) complex is an essential component of the DDR that is necessary for ATM-mediated HR repair and localizes to HPV DNA foci. In this study, we demonstrate that the HPV E7 protein is sufficient to increase levels of the MRN complex and also interacts with MRN components. We have found that Nbs1 depletion blocks productive viral replication and results in decreased localization of Mre11, Rad50, and the principal HR factor Rad51 to HPV DNA foci upon differentiation. Nbs1 contributes to the DDR by acting as an upstream activator of ATM in response to double-strand DNA breaks (DSBs) and as a downstream effector of ATM activity in the intra-S-phase checkpoint. We have found that phosphorylation of ATM and its downstream target Chk2, as well as SMC1 (structural maintenance of chromosome 1), is maintained upon Nbs1 knockdown in differentiating cells. Given that ATM and Chk2 are required for productive replication, our results suggest that Nbs1 contributes to viral replication outside its role as an ATM activator, potentially through ensuring localization of DNA repair factors to viral genomes that are necessary for efficient productive replication. IMPORTANCE: The mechanisms that regulate human papillomavirus (HPV) replication during the viral life cycle are not well understood. Our finding that Nbs1 is necessary for productive replication even in the presence of ATM (ataxia telangiectasia-mutated kinase) and Chk2 phosphorylation offers evidence that Nbs1 contributes to viral replication downstream of facilitating ATM activation. Nbs1 is required for the recruitment of Mre11 and Rad50 to viral genomes, suggesting that the MRN complex plays a direct role in facilitating productive viral replication, potentially through the processing of substrates that are recognized by the key homologous recombination (HR) factor Rad51. The discovery that E7 increases levels of MRN components, and MRN complex formation, identifies a novel role for E7 in facilitating productive replication. Our study not only identifies DNA repair factors necessary for HPV replication but also provides a deeper understanding of how HPV utilizes the DNA damage response to regulate viral replication.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Interacciones Huésped-Patógeno , Papillomavirus Humano 31/fisiología , Proteínas Nucleares/metabolismo , Replicación Viral , Células Cultivadas , Células Epiteliales , Humanos , Queratinocitos/virología , Proteínas E7 de Papillomavirus/metabolismo
7.
Cell Cycle ; 13(5): 820-33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24407515

RESUMEN

The PI3K/Akt/mTORC1 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance, and metastasis. One molecule regulated by this pathway is GSK-3ß. GSK-3ß is phosphorylated by Akt on S9, which leads to its inactivation; however, GSK-3ß also can regulate the activity of the PI3K/Akt/mTORC1 pathway by phosphorylating molecules such as PTEN, TSC2, p70S6K, and 4E-BP1. To further elucidate the roles of GSK-3ß in chemotherapeutic drug and hormonal resistance of MCF-7 breast cancer cells, we transfected MCF-7 breast cancer cells with wild-type (WT), kinase-dead (KD), and constitutively activated (A9) forms of GSK-3ß. MCF-7/GSK-3ß(KD) cells were more resistant to doxorubicin and tamoxifen compared with either MCF-7/GSK-3ß(WT) or MCF-7/GSK-3ß(A9) cells. In the presence and absence of doxorubicin, the MCF-7/GSK-3ß(KD) cells formed more colonies in soft agar compared with MCF-7/GSK-3ß(WT) or MCF-7/GSK-3ß(A9) cells. In contrast, MCF-7/GSK-3ß(KD) cells displayed an elevated sensitivity to the mTORC1 blocker rapamycin compared with MCF-7/GSK-3ß(WT) or MCF-7/GSK-3ß(A9) cells, while no differences between the 3 cell types were observed upon treatment with a MEK inhibitor by itself. However, resistance to doxorubicin and tamoxifen were alleviated in MCF-7/GSK-3ß(KD) cells upon co-treatment with an MEK inhibitor, indicating regulation of this resistance by the Raf/MEK/ERK pathway. Treatment of MCF-7 and MCF-7/GSK-3ß(WT) cells with doxorubicin eliminated the detection of S9-phosphorylated GSK-3ß, while total GSK-3ß was still detected. In contrast, S9-phosphorylated GSK-3ß was still detected in MCF-7/GSK-3ß(KD) and MCF-7/GSK-3ß(A9) cells, indicating that one of the effects of doxorubicin on MCF-7 cells was suppression of S9-phosphorylated GSK-3ß, which could result in increased GSK-3ß activity. Taken together, these results demonstrate that introduction of GSK-3ß(KD) into MCF-7 breast cancer cells promotes resistance to doxorubicin and tamoxifen, but sensitizes the cells to mTORC1 blockade by rapamycin. Therefore GSK-3ß is a key regulatory molecule in sensitivity of breast cancer cells to chemo-, hormonal, and targeted therapy.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Antineoplásicos Hormonales/farmacología , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Tamoxifeno/farmacología , Femenino , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Células MCF-7 , Diana Mecanicista del Complejo 1 de la Rapamicina , Terapia Molecular Dirigida , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Fosforilación , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
8.
Curr Pharm Des ; 20(24): 3944-57, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24138714

RESUMEN

The RAS/RAF/MEK/ ERK and the PI3K/AKT/mTOR pathways govern fundamental physiological processes, such as cell proliferation, differentiation, metabolism, cytoskeleton reorganization and cell death and survival. Constitutive activation of these signal transduction pathways is a required hallmark of cancer and dysregulation, on either genetic or epigenetic grounds, of these pathways has been implicated in the initiation, progression and metastastic spread of lung cances. Targeting components of the MAPK and PI3K cascades is thus an attractive strategy in the development of novel therapeutic approaches to treat lung cancer, although the use of single pathway inhibitors has met with limited clinical success so far. Indeed, the presence of intra- and inter-pathway compensatory loops that re-activate the very same cascade, either upstream or downstream the point of pharmacological blockade, or activate the alternate pathway following the blockade of one signaling cascade has been demonstrated, potentially driving preclinical (and possibly clinical) resistance. Therefore, the blockade of both pathways with combinations of signaling inhibitors might result in a more efficient anti-tumor effect, and thus potentially overcome and/or delay clinical resistance, as compared with single agent. The current review aims at summarizing the current status of preclinical and clinical research with regard to pathway crosstalks between the MAPK and PI3K cascades in NSCLC and the rationale for combined therapeutic pathway targeting.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico
10.
Cell Cycle ; 11(24): 4579-88, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23187804

RESUMEN

Prostate cancer is the second most commonly diagnosed cancer in men, and approximately one-third of those diagnosed succumb to the disease. The development of prostate cancer from small regions of hyperplasia to invasive tumors requires genetic and epigenetic alterations of critical cellular components to aid in the development of cells more adapted for aberrant growth. The p53 transcription factor is a critical element in the cell's ability to regulate the cell cycle and its response to DNA damage. Mutations within the DNA-binding domain of p53 are common and allow the formation of tetramers; however, these alterations prevent this protein complex from associating with target gene promoters. In the present study, we examined the effects of p53 functionality in prostate cancer cells that harbored wild-type (WT) or mutant forms of the protein in response to commonly used chemotherapeutic drugs. The androgen receptor positive 22Rv-1 and LNCaP prostate cancer cell lines carry WT p53 and were demonstrated to have a decrease in chemotherapeutic drug sensitivity when transfected with a dominant-negative (DN) p53. Conversely, expression of the WT p53 in the p53-mutated and more advanced DU145 prostate cancer cell line significantly increased its overall sensitivity to anti-neoplastic drugs. Furthermore, analysis of colony formation in soft agar revealed that the functional status of p53 in each cell line altered the cell's ability to proliferate in an anchorage-independent fashion. Prostate cancer colony growth was more prevalent when p53 transcriptional activity was decreased, whereas growth was more limited in the presence of functional p53. These results demonstrate that the functional status of the tumor suppressor p53 is important in the progression of prostate cancer and dictates the overall effectiveness a given drug would have on disease treatment.


Asunto(s)
Antineoplásicos/farmacología , Imidazoles/farmacología , Piperazinas/farmacología , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Humanos , Masculino , Neoplasias de la Próstata/genética , Proteína p53 Supresora de Tumor/genética
11.
Cell Cycle ; 11(23): 4447-61, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23159854

RESUMEN

Neutrophil gelatinase-associated lipocalin (NGAL, a.k.a Lnc2) is a member of the lipocalin family and has diverse roles. NGAL can stabilize matrix metalloproteinase-9 from autodegradation. NGAL is considered as a siderocalin that is important in the transport of iron. NGAL expression has also been associated with certain neoplasias and is implicated in the metastasis of breast cancer. In a previous study, we examined whether ectopic NGAL expression would alter the sensitivity of breast epithelial, breast and colorectal cancer cells to the effects of the chemotherapeutic drug doxorubicin. While abundant NGAL expression was detected in all the cells infected with a retrovirus encoding NGAL, this expression did not alter the sensitivity of these cells to doxorubicin as compared with empty vector-transduced cells. We were also interested in determining the effects of ectopic NGAL expression on the sensitivity to small-molecule inhibitors targeting key signaling molecules. Ectopic NGAL expression increased the sensitivity of MCF-7 breast cancer cells to EGFR, Bcl-2 and calmodulin kinase inhibitors as well as the natural plant product berberine. Furthermore, when suboptimal concentrations of certain inhibitors were combined with doxorubicin, a reduction in the doxorubicin IC 50 was frequently observed. An exception was observed when doxorubicin was combined with rapamycin, as doxorubicin suppressed the sensitivity of the NGAL-transduced MCF-7 cells to rapamycin when compared with the empty vector controls. In contrast, changes in the sensitivities of the NGAL-transduced HT-29 colorectal cancer cell line and the breast epithelial MCF-10A cell line were not detected compared with empty vector-transduced cells. Doxorubicin-resistant MCF-7/Dox (R) cells were examined in these experiments as a control drug-resistant line; it displayed increased sensitivity to EGFR and Bcl-2 inhibitors compared with empty vector transduced MCF-7 cells. These results indicate that NGAL expression can alter the sensitivity of certain cancer cells to small-molecule inhibitors, suggesting that patients whose tumors exhibit elevated NGAL expression or have become drug-resistant may display altered responses to certain small-molecule inhibitors.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Berberina/farmacología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Receptores ErbB/antagonistas & inhibidores , Lipocalinas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Fase Aguda/genética , Antibióticos Antineoplásicos/farmacología , Bencilaminas/farmacología , Compuestos de Bifenilo/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Línea Celular Tumoral , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/metabolismo , Femenino , Expresión Génica/efectos de los fármacos , Células HT29 , Humanos , Lipocalina 2 , Lipocalinas/genética , Células MCF-7 , Nitrofenoles/farmacología , Piperazinas/farmacología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Quinazolinas/farmacología , Sirolimus/farmacología , Sulfonamidas/farmacología , Tirfostinos/farmacología
12.
Oncotarget ; 3(10): 1236-45, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23100449

RESUMEN

Neutrophil gelatinase-associated lipocalin (NGAL, a.k.a Lnc2) is a member of the lipocalin family which has diverse roles including stabilizing matrix metalloproteinase-9 from auto-degradation and as siderocalins which are important in the transport of iron. NGAL also has important biological functions involved in immunity and inflammation as well as responses to kidney damage. NGAL expression has also been associated with certain neoplasia and is important in the metastasis of breast cancer. Many advanced cancer patients have elevated levels of NGAL in their urine and it has been proposed that NGAL may be a prognostic indicator for certain cancers (e.g. breast, brain, and others). NGAL expression is detected in response to various chemotherapeutic drugs including doxorubicin and docetaxel. We were interested in the roles of NGAL expression in cancer and whether it is associated with chemotherapeutic drug resistance. In the present study, we investigated whether increased NGAL expression led to resistance to the chemotherapeutic drug doxorubicin in normal breast epithelial cells (MCF-10A), breast cancer cells (MCF-7), and colorectal cancer cells (HT-29). We infected the various cell lines with a retrovirus encoding NGAL which we constructed. Increased NGAL expression was readily detected in the NGAL-infected cells but not the empty vector-infected cells. However, increased NGAL expression did not alter the sensitivity of the cells to the chemotherapeutic drug doxorubicin. Thus, although NGAL expression is often detected after chemotherapeutic drug treatment, it by itself, does not lead to doxorubicin resistance.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Lipocalinas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Western Blotting , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Humanos , Lipocalina 2 , Células Tumorales Cultivadas
13.
Oncotarget ; 3(10): 1068-111, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23085539

RESUMEN

The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Targeting these pathways is often complex and can result in pathway activation depending on the presence of upstream mutations (e.g., Raf inhibitors induce Raf activation in cells with wild type (WT) RAF in the presence of mutant, activated RAS) and rapamycin can induce Akt activation. Targeting with inhibitors directed at two constituents of the same pathway or two different signaling pathways may be a more effective approach. This review will first evaluate potential uses of Raf, MEK, PI3K, Akt and mTOR inhibitors that have been investigated in pre-clinical and clinical investigations and then discuss how cancers can become insensitive to various inhibitors and potential strategies to overcome this resistance.


Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Mutación/genética , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/genética , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/genética , Neoplasias/genética , Neoplasias/patología , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética
14.
Oncotarget ; 3(9): 954-87, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23006971

RESUMEN

The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Certain components of these pathways, RAS, NF1, BRAF, MEK1, DUSP5, PP2A, PIK3CA, PIK3R1, PIK3R4, PIK3R5, IRS4, AKT, NFKB1, MTOR, PTEN, TSC1, and TSC2 may also be activated/inactivated by mutations or epigenetic silencing. Upstream mutations in one signaling pathway or even in downstream components of the same pathway can alter the sensitivity of the cells to certain small molecule inhibitors. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of components of these cascades can contribute to: resistance to other pathway inhibitors, chemotherapeutic drug resistance, premature aging as well as other diseases. This review will first describe these pathways and discuss how genetic mutations and epigenetic alterations can result in resistance to various inhibitors.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , Proteínas ras/genética , Animales , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Quinasas raf/genética , Quinasas raf/metabolismo , Proteínas ras/metabolismo
15.
Curr Pharm Des ; 18(13): 1784-95, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22394167

RESUMEN

An area of therapeutic interest in cancer biology and treatment is targeting the cancer stem cell, more appropriately referred to as the cancer initiating cell (CIC). CICs comprise a subset of hierarchically organized, rare cancer cells with the ability to initiate cancer in xenografts in genetically modified murine models. CICs are thought to be responsible for tumor onset, self-renewal/maintenance, mutation accumulation and metastasis. CICs may lay dormant after various cancer therapies which eliminate the more rapidly proliferating bulk cancer (BC) mass. However, CICs may remerge after therapy is discontinued as they may represent cells which were either intrinsically resistant to the original therapeutic approach or they have acquired mutations which confer resistance to the primary therapy. In experimental mouse tumor transplant models, CICs have the ability to transfer the tumor to immunocompromised mice very efficiently while the BCs are not able to do so as effectively. Often CICs display increased expression of proteins involved in drug resistance and hence they are intrinsically resistant to many chemotherapeutic approaches. Furthermore, the CICs may be in a suspended state of proliferation and not sensitive to common chemotherapeutic and radiological approaches often employed to eliminate the rapidly proliferating BCs. Promising therapeutic approaches include the targeting of certain signal transduction pathways (e.g., RAC, WNT, PI3K, PML) with small molecule inhibitors or targeting specific cell-surface molecules (e.g., CD44), with effective cytotoxic antibodies. The existence of CICs could explain the high frequency of relapse and resistance to many currently used cancer therapies. New approaches should be developed to effectively target the CIC which could vastly improve cancer therapies and outcomes. This review will discuss recent concepts of targeting CICs in certain leukemia models.


Asunto(s)
Antineoplásicos/uso terapéutico , Productos Biológicos/uso terapéutico , Neoplasias/terapia , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Animales , Humanos , Ratones , Neoplasias/metabolismo
17.
Oncotarget ; 3(12): 1505-21, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23455493

RESUMEN

Over the past few years, significant advances have occurred in both our understanding of the complexity of signal transduction pathways as well as the isolation of specific inhibitors which target key components in those pathways. Furthermore critical information is being accrued regarding how genetic mutations can affect the sensitivity of various types of patients to targeted therapy. Finally, genetic mechanisms responsible for the development of resistance after targeted therapy are being discovered which may allow the creation of alternative therapies to overcome resistance. This review will discuss some of the highlights over the past few years on the roles of key signaling pathways in various diseases, the targeting of signal transduction pathways and the genetic mechanisms governing sensitivity and resistance to targeted therapies.


Asunto(s)
Antineoplásicos/uso terapéutico , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Animales , Diseño de Fármacos , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Transducción de Señal/genética
18.
Oncotarget ; 2(8): 610-26, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21881167

RESUMEN

Escape from cellular senescence induction is a potent mechanism for chemoresistance. Cellular senescence can be induced in breast cancer cell lines by the removal of estrogen signaling with tamoxifen or by the accumulation of DNA damage induced by the chemotherapeutic drug doxorubicin. Long term culturing of the hormone-sensitive breast cancer cell line MCF-7 in doxorubicin (MCF-7/DoxR) reduced the ability of doxorubicin, but not tamoxifen, to induce senescence. Two pathways that are often upregulated in chemo- and hormonal-resistance are the PI3K/PTEN/Akt/mTOR and Ras/Raf/MEK/ERK pathways. To determine if active Akt-1 and Raf-1 can influence drug-induced senescence, we stably introduced activated ΔAkt-1(CA) and ΔRaf-1(CA) into drug-sensitive and doxorubicin-resistant cells. Expression of a constitutively-active Raf-1 construct resulted in higher baseline senescence, indicating these cells possessed the ability to undergo oncogene-induced-senescence. Constitutive activation of the Akt pathway significantly decreased drug-induced senescence in response to doxorubicin but not tamoxifen in MCF-7 cells. However, constitutive Akt-1 activation in drug-resistant cells containing high levels of active ERK completely escaped cellular senescence induced by doxorubicin and tamoxifen. These results indicate that up regulation of the Ras/PI3K/PTEN/Akt/mTOR pathway in the presence of elevated Ras/Raf/MEK/ERK signaling together can contribute to drug-resistance by diminishing cell senescence in response to chemotherapy. Understanding how breast cancers containing certain oncogenic mutations escape cell senescence in response to chemotherapy and hormonal based therapies may provide insights into the design of more effective drug combinations for the treatment of breast cancer.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/enzimología , Senescencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Tamoxifeno/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Femenino , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-raf/genética , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección
19.
Cell Cycle ; 10(17): 3003-15, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21869603

RESUMEN

Elucidating the response of breast cancer cells to chemotherapeutic and hormonal based drugs and radiation is clearly important as these are common treatment approaches. Signaling cascades often involved in chemo-, hormonal- and radiation resistance are the Ras/PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK and p53 pathways. In the following studies we have examined the effects of activation of the Ras/PI3K/PTEN/Akt/mTOR cascade in the response of MCF-7 breast cancer cells to chemotherapeutic- and hormonal-based drugs and radiation. Activation of Akt by introduction of conditionally-activated Akt-1 gene could result in resistance to chemotherapeutic and hormonal based drugs as well as radiation. We have determined that chemotherapeutic drugs such as doxorubicin or the hormone based drug tamoxifen, both used to treat breast cancer, resulted in the activation of the Raf/MEK/ERK pathway which is often associated with a pro-proliferative, anti-apoptotic response. In drug sensitive MCF-7 cells which have wild-type p53; ERK, p53 and downstream p21 (Cip-1 ) were induced upon exposure to doxorubicin. In contrast, in the drug resistant cells which expressed activated Akt-1, much lower levels of p53 and p21 (Cip1) were induced upon exposure to doxorubicin. These results indicate the involvement of the Ras/PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK and p53 pathways in the response to chemotherapeutic and hormonal based drugs. Understanding how breast cancers respond to chemo- and hormonal-based therapies and radiation may enhance the ability to treat breast cancer more effectively.


Asunto(s)
Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/terapia , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Femenino , Humanos , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Tolerancia a Radiación , Retroviridae/genética , Retroviridae/metabolismo , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Tamoxifeno/farmacología , Transfección , Proteína p53 Supresora de Tumor/metabolismo
20.
Oncotarget ; 2(7): 538-50, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21730367

RESUMEN

Elucidating the response of breast cancer cells to chemotherapeutic and hormonal based drugs is clearly important as these are frequently used therapeutic approaches. A signaling pathway often involved in chemo- and hormonal-resistance is the Ras/PI3K/PTEN/Akt/mTOR cascades. In the studies presented in this report, we have examined the effects of constitutive activation of Akt on the sensitivity of MCF-7 breast cancer cells to chemotherapeutic- and hormonal-based drugs as well as mTOR inhibitors. MCF-7 cells which expressed a constitutively-activated Akt-1 gene [∆Akt-1(CA)] were more resistant to doxorubicin, etoposide and 4-OH-tamoxifen (4HT) than cells lacking ∆Akt-1(CA). Cells which expressed ∆Akt-1(CA) were hypersensitive to the mTOR inhibitor rapamycin. Furthermore, rapamycin lowered the IC50s for doxorubicin, etoposide and 4HT in the cells which expressed ∆Akt-1(CA), demonstrating a potential improved method for treating certain breast cancers which have deregulated PI3K/PTEN/Akt/mTOR signaling. Understanding how breast cancers respond to chemo- and hormonal-based therapies and the mechanisms by which they can become drug resistant may enhance our ability to treat breast cancer. These results also document the potential importance of knowledge of the mutations present in certain cancers which may permit more effective therapies.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Doxorrubicina/farmacología , Etopósido/farmacología , Femenino , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Tamoxifeno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...