Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 629(8011): 410-416, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632404

RESUMEN

Bacteria have adapted to phage predation by evolving a vast assortment of defence systems1. Although anti-phage immunity genes can be identified using bioinformatic tools, the discovery of novel systems is restricted to the available prokaryotic sequence data2. Here, to overcome this limitation, we infected Escherichia coli carrying a soil metagenomic DNA library3 with the lytic coliphage T4 to isolate clones carrying protective genes. Following this approach, we identified Brig1, a DNA glycosylase that excises α-glucosyl-hydroxymethylcytosine nucleobases from the bacteriophage T4 genome to generate abasic sites and inhibit viral replication. Brig1 homologues that provide immunity against T-even phages are present in multiple phage defence loci across distinct clades of bacteria. Our study highlights the benefits of screening unsequenced DNA and reveals prokaryotic DNA glycosylases as important players in the bacteria-phage arms race.


Asunto(s)
Bacterias , Bacteriófago T4 , ADN Glicosilasas , Bacterias/clasificación , Bacterias/enzimología , Bacterias/genética , Bacterias/inmunología , Bacterias/virología , Bacteriófago T4/crecimiento & desarrollo , Bacteriófago T4/inmunología , Bacteriófago T4/metabolismo , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Escherichia coli/genética , Escherichia coli/virología , Biblioteca de Genes , Metagenómica/métodos , Microbiología del Suelo , Replicación Viral
2.
Nucleic Acids Res ; 52(8): 4659-4675, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38554102

RESUMEN

RexA and RexB function as an exclusion system that prevents bacteriophage T4rII mutants from growing on Escherichia coli λ phage lysogens. Recent data established that RexA is a non-specific DNA binding protein that can act independently of RexB to bias the λ bistable switch toward the lytic state, preventing conversion back to lysogeny. The molecular interactions underlying these activities are unknown, owing in part to a dearth of structural information. Here, we present the 2.05-Å crystal structure of the λ RexA dimer, which reveals a two-domain architecture with unexpected structural homology to the recombination-associated protein RdgC. Modelling suggests that our structure adopts a closed conformation and would require significant domain rearrangements to facilitate DNA binding. Mutagenesis coupled with electromobility shift assays, limited proteolysis, and double electron-electron spin resonance spectroscopy support a DNA-dependent conformational change. In vivo phenotypes of RexA mutants suggest that DNA binding is not a strict requirement for phage exclusion but may directly contribute to modulation of the bistable switch. We further demonstrate that RexA homologs from other temperate phages also dimerize and bind DNA in vitro. Collectively, these findings advance our mechanistic understanding of Rex functions and provide new evolutionary insights into different aspects of phage biology.


Asunto(s)
Bacteriófago lambda , Proteínas de Unión al ADN , Modelos Moleculares , Proteínas Virales , Bacteriófago lambda/genética , Cristalografía por Rayos X , Proteínas Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Unión Proteica , Multimerización de Proteína , ADN Viral/genética , ADN Viral/metabolismo , Mutación , Lisogenia , Escherichia coli/virología , Escherichia coli/genética , Escherichia coli/metabolismo , ADN/metabolismo , ADN/química
3.
Mol Microbiol ; 120(2): 122-140, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37254295

RESUMEN

Overcoming lysogenization defect (OLD) proteins are a conserved family of ATP-powered nucleases that function in anti-phage defense. Recent bioinformatic, genetic, and crystallographic studies have yielded new insights into the structure, function, and evolution of these enzymes. Here we review these developments and propose a new classification scheme to categorize OLD homologs that relies on gene neighborhoods, biochemical properties, domain organization, and catalytic machinery. This taxonomy reveals important similarities and differences between family members and provides a blueprint to contextualize future in vivo and in vitro findings. We also detail how OLD nucleases are related to PARIS and Septu anti-phage defense systems and discuss important mechanistic questions that remain unanswered.


Asunto(s)
Bacterias , Bacteriófagos , Esterasas , Bacteriófagos/fisiología , Bacterias/enzimología , Bacterias/virología , Esterasas/química , Exodesoxirribonucleasa V , Adenosina Trifosfatasas/química
4.
Nat Commun ; 13(1): 6368, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289207

RESUMEN

Poleroviruses, enamoviruses, and luteoviruses are icosahedral, positive sense RNA viruses that cause economically important diseases in food and fiber crops. They are transmitted by phloem-feeding aphids in a circulative manner that involves the movement across and within insect tissues. The N-terminal portion of the viral readthrough domain (NRTD) has been implicated as a key determinant of aphid transmission in each of these genera. Here, we report crystal structures of the NRTDs from the poleroviruses turnip yellow virus (TuYV) and potato leafroll virus (PLRV) at 1.53-Å and 2.22-Å resolution, respectively. These adopt a two-domain arrangement with a unique interdigitated topology and form highly conserved dimers that are stabilized by a C-terminal peptide that is critical for proper folding. We demonstrate that the PLRV NRTD can act as an inhibitor of virus transmission and identify NRTD mutant variants that are lethal to aphids. Sequence conservation argues that enamovirus and luteovirus NRTDs will follow the same structural blueprint, which affords a biological approach to block the spread of these agricultural pathogens in a generalizable manner.


Asunto(s)
Áfidos , Luteoviridae , Luteovirus , Animales , Luteoviridae/genética , Luteovirus/genética , Floema , Enfermedades de las Plantas
5.
J Struct Biol ; 214(1): 107811, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34813955

RESUMEN

Luteoviruses, poleroviruses, and enamoviruses are insect-transmitted, agricultural pathogens that infect a wide array of plants, including staple food crops. Previous cryo-electron microscopy studies of virus-like particles show that luteovirid viral capsids are built from a structural coat protein that organizes with T = 3 icosahedral symmetry. Here, we present the crystal structure of a truncated version of the coat protein monomer from potato leafroll virus at 1.80-Å resolution. In the crystal lattice, monomers pack into flat sheets that preserve the two-fold and three-fold axes of icosahedral symmetry and show minimal structural deviations when compared to the full-length subunits of the assembled virus-like particle. These observations have important implications in viral assembly and maturation and suggest that the CP N-terminus and its interactions with RNA play an important role in generating capsid curvature.


Asunto(s)
Luteoviridae , Ensamble de Virus , Cápside/química , Proteínas de la Cápside/química , Microscopía por Crioelectrón
6.
Mol Microbiol ; 116(6): 1464-1475, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34687258

RESUMEN

Invasion of the intestinal epithelium is an essential but energetically expensive survival strategy and is, therefore, tightly regulated by using specific cues from the environment. The enteric pathogen Salmonella controls its invasion machinery through the elegant coordination of three AraC-type transcription activators, HilD, HilC, and RtsA. Most environmental signals target HilD to control invasion, whereas HilC and RtsA are known only to augment these effects on HilD. Here we show that a fatty acid found in the murine colon, cis-2-hexadecenoic acid (c2-HDA), represses Salmonella invasion by directly targeting HilC and RtsA, in addition to HilD. c2-HDA directly binds each of these regulators and inhibits their attachment to DNA targets, repressing invasion even in the absence of HilD. Fatty acid binding, however, does not affect HilC and RtsA protein stability, unlike HilD. Importantly, we show that HilC and RtsA are highly effective in restoring HilD production and invasion gene expression after elimination of the repressive fatty acid c2-HDA. Together, these results illuminate a precise mechanism by which HilC and RtsA may modulate invasion as Salmonella navigates through different regions of the intestine, contributing to our understanding of how this enteric pathogen senses and adapts to a diverse intestinal environment while maintaining its virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Intestinos/metabolismo , Ácidos Palmíticos/metabolismo , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Bacterianas/genética , Islas Genómicas , Interacciones Huésped-Patógeno , Humanos , Intestinos/microbiología , Ratones , Unión Proteica , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Factores de Transcripción/genética , Virulencia
7.
Mol Microbiol ; 116(4): 1044-1063, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34379857

RESUMEN

The CI and Cro repressors of bacteriophage λ create a bistable switch between lysogenic and lytic growth. In λ lysogens, CI repressor expressed from the PRM promoter blocks expression of the lytic promoters PL and PR to allow stable maintenance of the lysogenic state. When lysogens are induced, CI repressor is inactivated and Cro repressor is expressed from the lytic PR promoter. Cro repressor blocks PRM transcription and CI repressor synthesis to ensure that the lytic state proceeds. RexA and RexB proteins, like CI, are expressed from the PRM promoter in λ lysogens; RexB is also expressed from a second promoter, PLIT , embedded in rexA. Here we show that RexA binds CI repressor and assists the transition from lysogenic to lytic growth, using both intact lysogens and defective prophages with reporter genes under the control of the lytic PL and PR promoters. Once lytic growth begins, if the bistable switch does return to the immune state, RexA expression lessens the probability that it will remain there, thus stabilizing the lytic state and activation of the lytic PL  and PR  promoters. RexB modulates the effect of RexA and may also help establish phage DNA replication as lytic growth ensues.


Asunto(s)
Bacteriófago lambda/fisiología , Replicación del ADN , Lisogenia , Proteínas Represoras/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas Virales/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo , ADN Viral , Regulación Viral de la Expresión Génica , Genes Virales , Regiones Promotoras Genéticas , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/metabolismo
8.
Nat Commun ; 11(1): 5907, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33219217

RESUMEN

McrBC complexes are motor-driven nucleases functioning in bacterial self-defense by cleaving foreign DNA. The GTP-specific AAA + protein McrB powers translocation along DNA and its hydrolysis activity is stimulated by its partner nuclease McrC. Here, we report cryo-EM structures of Thermococcus gammatolerans McrB and McrBC, and E. coli McrBC. The McrB hexamers, containing the necessary catalytic machinery for basal GTP hydrolysis, are intrinsically asymmetric. This asymmetry directs McrC binding so that it engages a single active site, where it then uses an arginine/lysine-mediated hydrogen-bonding network to reposition the asparagine in the McrB signature motif for optimal catalytic function. While the two McrBC complexes use different DNA-binding domains, these contribute to the same general GTP-recognition mechanism employed by all G proteins. Asymmetry also induces distinct inter-subunit interactions around the ring, suggesting a coordinated and directional GTP-hydrolysis cycle. Our data provide insights into the conserved molecular mechanisms governing McrB family AAA + motors.


Asunto(s)
Enzimas de Restricción del ADN , GTP Fosfohidrolasas/ultraestructura , Thermococcus , Archaea/metabolismo , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Enzimas de Restricción del ADN/química , Enzimas de Restricción del ADN/metabolismo , Enzimas de Restricción del ADN/ultraestructura , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Thermococcus/metabolismo , Thermococcus/ultraestructura
9.
J Struct Biol ; 211(3): 107572, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32652237

RESUMEN

McrBC is a conserved modification-dependent restriction system that in Escherichia coli specifically targets foreign DNA containing methylated cytosines. Crystallographic data show that the N-terminal domain of Escherichia coli McrB binds substrates via a base flipping mechanism. This region is poorly conserved among the plethora of McrB homologs, suggesting that other species may use alternative binding strategies and/or recognize different targets. Here we present the crystal structure of the N-terminal domain from Stayphlothermus marinus McrB (Sm3-180) at 1.92 Å, which adopts a PUA-like EVE fold that is closely related to the YTH and ASCH RNA binding domains. Unlike most PUA-like domains, Sm3-180 binds DNA and can associate with different modified substrates. We find the canonical 'aromatic cage' binding pocket that confers specificity for methylated bases in other EVE/YTH domains is degenerate and occluded in Sm3-180, which may contribute to its promiscuity in target recognition. Further structural comparison between different PUA-like domains identifies motifs and conformational variations that correlate with the preference for binding either DNA or RNA. Together these data have important implications for PUA-like domain specificity and suggest a broader biological versatility for the McrBC family than previously described.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Desulfurococcaceae/química , Proteínas de Unión al ARN/química , Proteínas Arqueales/genética , Sitios de Unión , Cristalografía por Rayos X , ADN de Archaea/química , ADN de Archaea/metabolismo , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Dominios Proteicos , Pliegue de Proteína , Factores de Empalme de ARN/química , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
10.
Infect Immun ; 88(10)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32690633

RESUMEN

Successful colonization by enteric pathogens is contingent upon effective interactions with the host and the resident microbiota. These pathogens thus respond to and integrate myriad signals to control virulence. Long-chain fatty acids repress the virulence of the important enteric pathogens Salmonella enterica and Vibrio cholerae by repressing AraC-type transcriptional regulators in pathogenicity islands. While several fatty acids are known to be repressive, we show here that cis-2-unsaturated fatty acids, a rare chemical class used as diffusible signal factors (DSFs), are highly potent inhibitors of virulence functions. We found that DSFs repressed virulence gene expression of enteric pathogens by interacting with transcriptional regulators of the AraC family. In Salmonella enterica serovar Typhimurium, DSFs repress the activity of HilD, an AraC-type activator essential to the induction of epithelial cell invasion, by both preventing its interaction with target DNA and inducing its rapid degradation by Lon protease. cis-2-Hexadecenoic acid (c2-HDA), a DSF produced by Xylella fastidiosa, was the most potent among those tested, repressing the HilD-dependent transcriptional regulator hilA and the type III secretion effector sopB >200- and 68-fold, respectively. Further, c2-HDA attenuated the transcription of the ToxT-dependent cholera toxin synthesis genes of V. cholerae c2-HDA significantly repressed invasion gene expression by Salmonella in the murine colitis model, indicating that the HilD-dependent signaling pathway functions within the complex milieu of the animal intestine. These data argue that enteric pathogens respond to DSFs as interspecies signals to identify appropriate niches in the gut for virulence activation, which could be exploited to control the virulence of enteric pathogens.


Asunto(s)
Factor de Transcripción de AraC/metabolismo , Intestinos/microbiología , Ácidos Palmíticos/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/patogenicidad , Animales , Factor de Transcripción de AraC/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Ácidos Grasos/genética , Proteínas de Transporte de Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/metabolismo , Regulación Bacteriana de la Expresión Génica , Islas Genómicas/genética , Ratones , Ácidos Palmíticos/química , Unión Proteica , Estabilidad Proteica , Salmonella typhimurium/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virulencia/genética
11.
Cell Rep ; 32(1): 107858, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32640224

RESUMEN

During mammalian meiotic prophase I, programmed DNA double-strand breaks are repaired by non-crossover or crossover events, the latter predominantly occurring via the class I crossover pathway and requiring the cyclin N-terminal domain-containing 1(CNTD1) protein. Using an epitope-tagged Cntd1 allele, we detect a short isoform of CNTD1 in vivo that lacks a predicted N-terminal cyclin domain and does not bind cyclin-dependent kinases. Instead, we find that the short-form CNTD1 variant associates with components of the replication factor C (RFC) machinery to facilitate crossover formation, and with the E2 ubiquitin conjugating enzyme, CDC34, to regulate ubiquitylation and subsequent degradation of the WEE1 kinase, thereby modulating cell-cycle progression. We propose that these interactions facilitate a role for CNTD1 as a stop-go regulator during prophase I, ensuring accurate and complete crossover formation before allowing metaphase progression and the first meiotic division.


Asunto(s)
Intercambio Genético , Ciclinas/metabolismo , Meiosis , Alelos , Animales , Núcleo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/química , Ciclinas/genética , Mapeo Epitopo , Puntos de Control de la Fase M del Ciclo Celular , Masculino , Profase Meiótica I , Metafase , Ratones Endogámicos C57BL , Mutación/genética , Fase Paquiteno , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación C/metabolismo , Espermatocitos/metabolismo
12.
J Mol Biol ; 432(10): 3309-3325, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32320687

RESUMEN

The 2019 novel coronavirus (2019-nCoV/SARS-CoV-2) originally arose as part of a major outbreak of respiratory disease centered on Hubei province, China. It is now a global pandemic and is a major public health concern. Taxonomically, SARS-CoV-2 was shown to be a Betacoronavirus (lineage B) closely related to SARS-CoV and SARS-related bat coronaviruses, and it has been reported to share a common receptor with SARS-CoV (ACE-2). Subsequently, betacoronaviruses from pangolins were identified as close relatives to SARS-CoV-2. Here, we perform structural modeling of the SARS-CoV-2 spike glycoprotein. Our data provide support for the similar receptor utilization between SARS-CoV-2 and SARS-CoV, despite a relatively low amino acid similarity in the receptor binding module. Compared to SARS-CoV and all other coronaviruses in Betacoronavirus lineage B, we identify an extended structural loop containing basic amino acids at the interface of the receptor binding (S1) and fusion (S2) domains. We suggest this loop confers fusion activation and entry properties more in line with betacoronaviruses in lineages A and C, and be a key component in the evolution of SARS-CoV-2 with this structural loop affecting virus stability and transmission.


Asunto(s)
Betacoronavirus/química , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Secuencia de Aminoácidos , Animales , Betacoronavirus/genética , COVID-19 , Quirópteros/virología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Euterios , Humanos , Modelos Moleculares , Pandemias , Filogenia , Neumonía Viral/virología , Proteolisis , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , SARS-CoV-2 , Alineación de Secuencia
13.
Nucleic Acids Res ; 48(5): 2762-2776, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32009148

RESUMEN

OLD family nucleases contain an N-terminal ATPase domain and a C-terminal Toprim domain. Homologs segregate into two classes based on primary sequence length and the presence/absence of a unique UvrD/PcrA/Rep-like helicase gene immediately downstream in the genome. Although we previously defined the catalytic machinery controlling Class 2 nuclease cleavage, degenerate conservation of the C-termini between classes precludes pinpointing the analogous residues in Class 1 enzymes by sequence alignment alone. Our Class 2 structures also provide no information on ATPase domain architecture and ATP hydrolysis. Here we present the full-length structure of the Class 1 OLD nuclease from Thermus scotoductus (Ts) at 2.20 Å resolution, which reveals a dimerization domain inserted into an N-terminal ABC ATPase fold and a C-terminal Toprim domain. Structural homology with genome maintenance proteins identifies conserved residues responsible for Ts OLD ATPase activity. Ts OLD lacks the C-terminal helical domain present in Class 2 OLD homologs yet preserves the spatial organization of the nuclease active site, arguing that OLD proteins use a conserved catalytic mechanism for DNA cleavage. We also demonstrate that mutants perturbing ATP hydrolysis or DNA cleavage in vitro impair P2 OLD-mediated killing of recBC-Escherichia coli hosts, indicating that both the ATPase and nuclease activities are required for OLD function in vivo.


Asunto(s)
Adenosina Trifosfato/metabolismo , Biocatálisis , Endonucleasas/química , Endonucleasas/metabolismo , Thermus/enzimología , Adenosina Trifosfatasas/química , Secuencia Conservada , Hidrólisis , Metales/metabolismo , Modelos Moleculares , Mutación/genética , Dominios Proteicos
14.
Protein Sci ; 29(6): 1416-1428, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31981262

RESUMEN

Dynamin-superfamily proteins (DSPs) are large self-assembling mechanochemical GTPases that harness GTP hydrolysis to drive membrane remodeling events needed for many cellular processes. Mutation to alanine of a fully conserved lysine within the P-loop of the DSP GTPase domain results in abrogation of GTPase activity. This mutant has been widely used in the context of several DSPs as a dominant-negative to impair DSP-dependent processes. However, the precise deficit of the P-loop K to A mutation remains an open question. Here, we use biophysical, biochemical and structural approaches to characterize this mutant in the context of the endosomal DSP Vps1. We show that the Vps1 P-loop K to A mutant binds nucleotide with an affinity similar to wild type but exhibits defects in the organization of the GTPase active site that explain the lack of hydrolysis. In cells, Vps1 and Dnm1 bearing the P-loop K to A mutation are defective in disassembly. These mutants become trapped in assemblies at the typical site of action of the DSP. This work provides mechanistic insight into the widely-used DSP P-loop K to A mutation and the basis of its dominant-negative effects in the cell.


Asunto(s)
Chaetomium/química , Dinaminas/química , Proteínas Fúngicas/genética , Lisina/genética , Mutación , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Chaetomium/citología , Chaetomium/metabolismo , Dinaminas/clasificación , Dinaminas/genética , Dinaminas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lisina/metabolismo , Modelos Moleculares , Proteínas de Transporte Vesicular/clasificación , Proteínas de Transporte Vesicular/genética
15.
J Biol Chem ; 295(3): 743-756, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31822563

RESUMEN

McrBC is a two-component, modification-dependent restriction system that cleaves foreign DNA-containing methylated cytosines. Previous crystallographic studies have shown that Escherichia coli McrB uses a base-flipping mechanism to recognize these modified substrates with high affinity. The side chains stabilizing both the flipped base and the distorted duplex are poorly conserved among McrB homologs, suggesting that other mechanisms may exist for binding modified DNA. Here we present the structures of the Thermococcus gammatolerans McrB DNA-binding domain (TgΔ185) both alone and in complex with a methylated DNA substrate at 1.68 and 2.27 Å resolution, respectively. The structures reveal that TgΔ185 consists of a YT521-B homology (YTH) domain, which is commonly found in eukaryotic proteins that bind methylated RNA and is structurally unrelated to the E. coli McrB DNA-binding domain. Structural superposition and co-crystallization further show that TgΔ185 shares a conserved aromatic cage with other YTH domains, which forms the binding pocket for a flipped-out base. Mutational analysis of this aromatic cage supports its role in conferring specificity for the methylated adenines, whereas an extended basic surface present in TgΔ185 facilitates its preferential binding to duplex DNA rather than RNA. Together, these findings establish a new binding mode and specificity among McrB homologs and expand the biological roles of YTH domains.


Asunto(s)
Metilación de ADN/genética , Enzimas de Restricción del ADN/química , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Conformación Proteica , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Cristalografía por Rayos X , Análisis Mutacional de ADN , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestructura , Unión Proteica/genética , Dominios Proteicos/genética , ARN/química , ARN/genética , Especificidad por Sustrato , Thermococcus
16.
Elife ; 82019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31464684

RESUMEN

Endocytosis of transmembrane proteins is orchestrated by the AP2 clathrin adaptor complex. AP2 dwells in a closed, inactive state in the cytosol, but adopts an open, active conformation on the plasma membrane. Membrane-activated complexes are also phosphorylated, but the significance of this mark is debated. We recently proposed that NECAP negatively regulates AP2 by binding open and phosphorylated complexes (Beacham et al., 2018). Here, we report high-resolution cryo-EM structures of NECAP bound to phosphorylated AP2. The site of AP2 phosphorylation is directly coordinated by residues of the NECAP PHear domain that are predicted from genetic screens in C. elegans. Using membrane mimetics to generate conformationally open AP2, we find that a second domain of NECAP binds these complexes and cryo-EM reveals both domains of NECAP engaging closed, inactive AP2. Assays in vitro and in vivo confirm these domains cooperate to inactivate AP2. We propose that phosphorylation marks adaptors for inactivation.


Asunto(s)
Complejo 2 de Proteína Adaptadora/química , Complejo 2 de Proteína Adaptadora/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Procesamiento Proteico-Postraduccional , Microscopía por Crioelectrón , Fosforilación , Unión Proteica
17.
Nucleic Acids Res ; 47(17): 9448-9463, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31400118

RESUMEN

Overcoming lysogenization defect (OLD) proteins constitute a family of uncharacterized nucleases present in bacteria, archaea, and some viruses. These enzymes contain an N-terminal ATPase domain and a C-terminal Toprim domain common amongst replication, recombination, and repair proteins. The in vivo activities of OLD proteins remain poorly understood and no definitive structural information exists. Here we identify and define two classes of OLD proteins based on differences in gene neighborhood and amino acid sequence conservation and present the crystal structures of the catalytic C-terminal regions from the Burkholderia pseudomallei and Xanthamonas campestris p.v. campestris Class 2 OLD proteins at 2.24 Å and 1.86 Å resolution respectively. The structures reveal a two-domain architecture containing a Toprim domain with altered architecture and a unique helical domain. Conserved side chains contributed by both domains coordinate two bound magnesium ions in the active site of B. pseudomallei OLD in a geometry that supports a two-metal catalysis mechanism for cleavage. The spatial organization of these domains additionally suggests a novel mode of DNA binding that is distinct from other Toprim containing proteins. Together, these findings define the fundamental structural properties of the OLD family catalytic core and the underlying mechanism controlling nuclease activity.


Asunto(s)
Burkholderia pseudomallei/química , Dominio Catalítico/genética , Desoxirribonucleasas/ultraestructura , Conformación Proteica , Xanthomonas/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos/genética , Burkholderia pseudomallei/genética , Catálisis , Desoxirribonucleasas/química , Desoxirribonucleasas/genética , Evolución Molecular , Lisogenia/genética , Metales/química , Dominios Proteicos/genética , Alineación de Secuencia , Xanthomonas/genética
18.
Traffic ; 20(10): 717-740, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31298797

RESUMEN

Dynamin-related proteins are multidomain, mechanochemical GTPases that self-assemble and orchestrate a wide array of cellular processes. Over the past decade, structural insights from X-ray crystallography and cryo-electron microscopy have reshaped our mechanistic understanding of these proteins. Here, we provide a historical perspective on these advances that highlights the structural attributes of different dynamin family members and explores how these characteristics affect GTP hydrolysis, conformational coupling and oligomerization. We also discuss a number of lingering challenges remaining in the field that suggest future directions of study.


Asunto(s)
Dinaminas/química , Animales , Sitios de Unión , Microscopía por Crioelectrón , Dinaminas/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica
19.
mBio ; 10(1)2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30782657

RESUMEN

The cell wall is a strong, yet flexible, meshwork of peptidoglycan (PG) that gives a bacterium structural integrity. To accommodate a growing cell, the wall is remodeled by both PG synthesis and degradation. Vibrio cholerae encodes a group of three nearly identical zinc-dependent endopeptidases (EPs) that are predicted to hydrolyze PG to facilitate cell growth. Two of these (ShyA and ShyC) are conditionally essential housekeeping EPs, while the third (ShyB) is not expressed under standard laboratory conditions. To investigate the role of ShyB, we conducted a transposon screen to identify mutations that activate shyB transcription. We found that shyB is induced as part of the Zur-mediated zinc starvation response, a mode of regulation not previously reported for cell wall lytic enzymes. In vivo, ShyB alone was sufficient to sustain cell growth in low-zinc environments. In vitro, ShyB retained its d,d-endopeptidase activity against purified sacculi in the presence of the metal chelator EDTA at concentrations that inhibit ShyA and ShyC. This insensitivity to metal chelation is likely what enables ShyB to substitute for other EPs during zinc starvation. Our survey of transcriptomic data from diverse bacteria identified other candidate Zur-regulated EPs, suggesting that this adaptation to zinc starvation is employed by other Gram-negative bacteria.IMPORTANCE Bacteria encode a variety of adaptations that enable them to survive during zinc starvation, a condition which is encountered both in natural environments and inside the human host. In Vibrio cholerae, the causative agent of the diarrheal disease cholera, we have identified a novel member of this zinc starvation response, a cell wall hydrolase that retains function and is conditionally essential for cell growth in low-zinc environments. Other Gram-negative bacteria contain homologs that appear to be under similar regulatory control. These findings are significant because they represent, to our knowledge, the first evidence that zinc homeostasis influences cell wall turnover. Anti-infective therapies commonly target the bacterial cell wall; therefore, an improved understanding of how the cell wall adapts to host-induced zinc starvation could lead to new antibiotic development. Such therapeutic interventions are required to combat the rising threat of drug-resistant infections.


Asunto(s)
Endopeptidasas/metabolismo , Regulación Bacteriana de la Expresión Génica , Peptidoglicano/metabolismo , Vibrio cholerae/enzimología , Vibrio cholerae/genética , Zinc/metabolismo , Coenzimas/metabolismo , Elementos Transponibles de ADN , Endopeptidasas/genética , Perfilación de la Expresión Génica , Hidrólisis , Mutagénesis Insercional , Activación Transcripcional
20.
J Cell Biol ; 217(10): 3608-3624, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30087125

RESUMEN

Dynamin-related proteins (DRPs) are large multidomain GTPases required for diverse membrane-remodeling events. DRPs self-assemble into helical structures, but how these structures are tailored to their cellular targets remains unclear. We demonstrate that the fungal DRP Vps1 primarily localizes to and functions at the endosomal compartment. We present crystal structures of a Vps1 GTPase-bundle signaling element (BSE) fusion in different nucleotide states to capture GTP hydrolysis intermediates and concomitant conformational changes. Using cryoEM, we determined the structure of full-length GMPPCP-bound Vps1. The Vps1 helix is more open and flexible than that of dynamin. This is due to further opening of the BSEs away from the GTPase domains. A novel interface between adjacent GTPase domains forms in Vps1 instead of the contacts between the BSE and adjacent stalks and GTPase domains as seen in dynamin. Disruption of this interface abolishes Vps1 function in vivo. Hence, Vps1 exhibits a unique helical architecture, highlighting structural flexibilities of DRP self-assembly.


Asunto(s)
Proteínas de Unión al GTP , Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...