Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cardiovasc Res ; 3(4): 441-459, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765203

RESUMEN

Tuning of genome structure and function is accomplished by chromatin-binding proteins, which determine the transcriptome and phenotype of the cell. Here we investigate how communication between extracellular stress and chromatin structure may regulate cellular mechanical behaviors. We demonstrate that histone H1.0, which compacts nucleosomes into higher-order chromatin fibers, controls genome organization and cellular stress response. We show that histone H1.0 has privileged expression in fibroblasts across tissue types and that its expression is necessary and sufficient to induce myofibroblast activation. Depletion of histone H1.0 prevents cytokine-induced fibroblast contraction, proliferation and migration via inhibition of a transcriptome comprising extracellular matrix, cytoskeletal and contractile genes, through a process that involves locus-specific H3K27 acetylation. Transient depletion of histone H1.0 in vivo prevents fibrosis in cardiac muscle. These findings identify an unexpected role of linker histones to orchestrate cellular mechanical behaviors, directly coupling force generation, nuclear organization and gene transcription.

2.
bioRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352455

RESUMEN

Postoperative atrial fibrillation (POAF) is the most common complication after cardiac surgery and a significant cause of increased morbidity and mortality. The development of novel POAF therapeutics has been limited by an insufficient understanding of molecular mechanisms promoting atrial fibrillation. In this observational cohort study, we enrolled 28 patients without a history of atrial fibrillation that underwent mitral valve surgery for degenerative mitral regurgitation and obtained left atrial tissue samples along the standard atriotomy incision in proximity to the right pulmonary veins. We isolated cardiomyocytes and performed transcriptome analyses demonstrating 13 differentially expressed genes associated with new-onset POAF. Notably, decreased expression of fibroblast growth factor 13 (FGF13), a fibroblast growth factor homologous factor known to modulate voltage-gated sodium channel Na V 1.5 inactivation, had the most significant association with POAF. To assess the functional significance of decreased FGF13 expression in atrial myocytes, we performed patch clamp experiments on neonatal rat atrial myocytes after siRNA-mediated FGF13 knockdown, demonstrating action potential prolongation. These critical findings indicate that decreased FGF13 expression promotes vulnerability to POAF.

3.
bioRxiv ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38014083

RESUMEN

Rationale: During postnatal cardiac hypertrophy, cardiomyocytes undergo mitotic exit, relying on DNA replication-independent mechanisms of histone turnover to maintain chromatin organization and gene transcription. In other tissues, circadian oscillations in nucleosome occupancy influence clock-controlled gene expression, suggesting an unrecognized role for the circadian clock in temporal control of histone turnover and coordinate cardiomyocyte gene expression. Objective: To elucidate roles for the master circadian transcription factor, Bmal1, in histone turnover, chromatin organization, and myocyte-specific gene expression and cell growth in the neonatal period. Methods and Results: Bmal1 knockdown in neonatal rat ventricular myocytes (NRVM) decreased myocyte size, total cellular protein, and transcription of the fetal hypertrophic gene Nppb following treatment with increasing serum concentrations or the α-adrenergic agonist phenylephrine (PE). Bmal1 knockdown decreased expression of clock-controlled genes Per2 and Tcap, and salt-inducible kinase 1 (Sik1) which was identified via gene ontology analysis of Bmal1 targets upregulated in adult versus embryonic hearts. Epigenomic analyses revealed co-localized chromatin accessibility and Bmal1 localization in the Sik1 promoter. Bmal1 knockdown impaired Per2 and Sik1 promoter accessibility as measured by MNase-qPCR and impaired histone turnover indicated by metabolic labeling of acid-soluble chromatin fractions and immunoblots of total and chromatin-associated core histones. Sik1 knockdown basally increased myocyte size, while simultaneously impairing and driving Nppb and Per2 transcription, respectively. Conclusions: Bmal1 is required for neonatal myocyte growth, replication-independent histone turnover, and chromatin organization at the Sik1 promoter. Sik1 represents a novel clock-controlled gene that coordinates myocyte growth with hypertrophic and clock-controlled gene transcription.

4.
J Cardiovasc Dev Dis ; 10(5)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37233188

RESUMEN

The PAF1 complex component Rtf1 is an RNA Polymerase II-interacting transcription regulatory protein that promotes transcription elongation and the co-transcriptional monoubiquitination of histone 2B. Rtf1 plays an essential role in the specification of cardiac progenitors from the lateral plate mesoderm during early embryogenesis, but its requirement in mature cardiac cells is unknown. Here, we investigate the importance of Rtf1 in neonatal and adult cardiomyocytes using knockdown and knockout approaches. We demonstrate that loss of Rtf1 activity in neonatal cardiomyocytes disrupts cell morphology and results in a breakdown of sarcomeres. Similarly, Rtf1 ablation in mature cardiomyocytes of the adult mouse heart leads to myofibril disorganization, disrupted cell-cell junctions, fibrosis, and systolic dysfunction. Rtf1 knockout hearts eventually fail and exhibit structural and gene expression defects resembling dilated cardiomyopathy. Intriguingly, we observed that loss of Rtf1 activity causes a rapid change in the expression of key cardiac structural and functional genes in both neonatal and adult cardiomyocytes, suggesting that Rtf1 is continuously required to support expression of the cardiac gene program.

5.
FASEB J ; 37(6): e22977, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37219486

RESUMEN

Anthracyclines such as doxorubicin (Dox) are effective chemotherapeutic agents; however, their use is hampered by subsequent cardiotoxicity risk. Our understanding of cardiomyocyte protective pathways activated following anthracycline-induced cardiotoxicity (AIC) remains incomplete. Insulin-like growth factor binding protein (IGFBP) 3 (Igfbp-3), the most abundant IGFBP family member in the circulation, is associated with effects on the metabolism, proliferation, and survival of various cells. Whereas Igfbp-3 is induced by Dox in the heart, its role in AIC is ill-defined. We investigated molecular mechanisms as well as systems-level transcriptomic consequences of manipulating Igfbp-3 in AIC using neonatal rat ventricular myocytes and human-induced pluripotent stem cell-derived cardiomyocytes. Our findings reveal that Dox induces the nuclear enrichment of Igfbp-3 in cardiomyocytes. Furthermore, Igfbp-3 reduces DNA damage, impedes topoisomerase IIß expression (Top2ß) which forms Top2ß-Dox-DNA cleavage complex leading to DNA double-strand breaks (DSB), alleviates detyrosinated microtubule accumulation-a hallmark of increased cardiomyocyte stiffness and heart failure-and favorably affects contractility following Dox treatment. These results indicate that Igfbp-3 is induced by cardiomyocytes in an effort to mitigate AIC.


Asunto(s)
Antraciclinas , Transcriptoma , Humanos , Animales , Ratas , Cardiotoxicidad , Antibióticos Antineoplásicos , Miocitos Cardíacos
6.
J Clin Invest ; 133(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719369

RESUMEN

How chromatin accessibility and structure endow highly specialized cells with their unique phenotypes is an area of intense investigation. In the mammalian heart, an exclusive subset of cardiac cells comprise the conduction system. Many molecular components of this system are well studied and genetic variation in some of the components induces abnormal cardiac conduction. However, genetic risk for cardiac arrhythmias in human populations also occurs in noncoding regions. A study by Bhattacharyya, Kollipara, et al. in this issue of the JCI examines how chromatin accessibility and structure may explain the mechanisms by which noncoding variants increase susceptibility to cardiac arrhythmias. We discuss the implications of these findings for cell type-specific gene regulation and highlight potential therapeutic strategies to engineer locus-specific epigenomic remodeling in vivo.


Asunto(s)
Arritmias Cardíacas , Cromatina , Animales , Humanos , Cromatina/genética , Sistema de Conducción Cardíaco , Corazón , Frecuencia Cardíaca , Mamíferos
7.
Clin Epigenetics ; 14(1): 195, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36585726

RESUMEN

BACKGROUND: Cardiac surgery and cardiopulmonary bypass induce a substantial immune and inflammatory response, the overactivation of which is associated with significant pulmonary, cardiovascular, and neurologic complications. Commensurate with the immune and inflammatory response are changes in the heart and vasculature itself, which together drive postoperative complications through mechanisms that are poorly understood. Longitudinal DNA methylation profiling has the potential to identify changes in gene regulatory mechanisms that are secondary to surgery and to identify molecular processes that predict and/or cause postoperative complications. In this study, we measure DNA methylation in preoperative and postoperative whole blood samples from 96 patients undergoing cardiac surgery on cardiopulmonary bypass. RESULTS: While the vast majority of DNA methylation is unchanged by surgery after accounting for changes in cell-type composition, we identify several loci with statistically significant postoperative changes in methylation. Additionally, two of these loci are associated with new-onset postoperative atrial fibrillation, a significant complication after cardiac surgery. Paired statistical analysis, use of FACS data to support sufficient control of cell-type heterogeneity, and measurement of IL6 levels in a subset of patients add rigor to this analysis, allowing us to distinguish cell-type variability from actual changes in methylation. CONCLUSIONS: This study identifies significant changes in DNA methylation that occur immediately after cardiac surgery and demonstrates that these acute alterations in DNA methylation have the granularity to identify processes associated with major postoperative complications. This research also establishes methods for controlling for cell-type variability in a large human cohort that may be useful to deploy in other longitudinal studies of epigenetic marks in the setting of acute and chronic disease.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Metilación de ADN , Humanos , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Estudios Longitudinales , Regulación de la Expresión Génica , Complicaciones Posoperatorias/genética
8.
Front Bioinform ; 2: 831025, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304311

RESUMEN

Recent advances in epigenomics measurements have resulted in a preponderance of genomic sequencing datasets that require focused analyses to discover mechanisms governing biological processes. In addition, multiple epigenomics experiments are typically performed within the same study, thereby increasing the complexity and difficulty of making meaningful inferences from large datasets. One gap in the sequencing data analysis pipeline is the availability of tools to efficiently browse genomic data for scientists that do not have bioinformatics training. To bridge this gap, we developed genomeSidekick, a graphical user interface written in R that allows researchers to perform bespoke analyses on their transcriptomic and chromatin accessibility or chromatin immunoprecipitation data without the need for command line tools. Importantly, genomeSidekick outputs lists of up- and downregulated genes or chromatin features with differential accessibility or occupancy; visualizes omics data using interactive volcano plots; performs Gene Ontology analyses locally; and queries PubMed for selected gene candidates for further evaluation. Outputs can be saved using the user interface and the code underlying genomeSidekick can be edited for custom analyses. In summary, genomeSidekick brings wet lab scientists and bioinformaticians into a shared fluency with the end goal of driving mechanistic discovery.

9.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35887177

RESUMEN

The surgically induced remission of liver disease represents a model to investigate the signalling processes that trigger the development of nonalcoholic steatohepatitis with the aim of identifying novel therapeutic targets. We recruited patients with severe obesity with or without nonalcoholic steatohepatitis and obtained liver and plasma samples before and after laparoscopic sleeve gastrectomy for immunoblotting, immunocytochemical, metabolomic, transcriptomic and epigenetic analyses. Functional studies were performed in HepG2 cells and primary hepatocytes. Surgery was associated with a decrease in the inflammatory response and revealed the role of mitogen-activated protein kinases. Nonalcoholic steatohepatitis was associated with an increased glutaminolysis-induced production of α-ketoglutarate and the hyperactivation of mammalian target of rapamycin complex 1. These changes were crucial for adenosine monophosphate-activated protein kinase/mammalian target of rapamycin-driven pathways that modulated hepatocyte survival by coordinating apoptosis and autophagy and affected methylation-related epigenomic remodelling enzymes. Hepatic transcriptome signatures and differentially methylated genomic regions distinguished patients with and without steatohepatitis. Our results suggest that the increased glutaminolysis-induced α-ketoglutarate production and the mammalian target of rapamycin complex 1 dysregulation play a crucial role in the inefficient adaptive responses leading to steatohepatitis in obesity.


Asunto(s)
Laparoscopía , Enfermedad del Hígado Graso no Alcohólico , Obesidad Mórbida , Gastrectomía/métodos , Humanos , Ácidos Cetoglutáricos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad Mórbida/cirugía , Serina-Treonina Quinasas TOR
10.
Front Cardiovasc Med ; 9: 837725, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620521

RESUMEN

Background: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and post-operative atrial fibrillation (POAF) is a major healthcare burden, contributing to an increased risk of stroke, kidney failure, heart attack and death. Genetic studies have identified associations with AF, but no molecular diagnostic exists to predict POAF based on pre-operative measurements. Such a tool would be of great value for perioperative planning to improve patient care and reduce healthcare costs. In this pilot study of epigenetic precision medicine in the perioperative period, we carried out bisulfite sequencing to measure DNA methylation status in blood collected from patients prior to cardiac surgery to identify biosignatures of POAF. Methods: We enrolled 221 patients undergoing cardiac surgery in this prospective observational study. DNA methylation measurements were obtained from blood samples drawn from awake patients prior to surgery. After controlling for clinical and methylation covariates, we analyzed DNA methylation loci in the discovery cohort of 110 patients for association with POAF. We also constructed predictive models for POAF using clinical and DNA methylation data. We subsequently performed targeted analyses of a separate cohort of 101 cardiac surgical patients to measure the methylation status solely of significant methylation loci in the discovery cohort. Results: A total of 47 patients in the discovery cohort (42.7%) and 43 patients in the validation cohort (42.6%) developed POAF. We identified 12 CpGs that were statistically significant in the discovery cohort after correcting for multiple hypothesis testing. Of these sites, 6 were amenable to targeted bisulfite sequencing and chr16:24640902 was statistically significant in the validation cohort. In addition, the methylation POAF prediction model had an AUC of 0.79 in the validation cohort. Conclusions: We have identified DNA methylation biomarkers that can predict future occurrence of POAF associated with cardiac surgery. This research demonstrates the use of precision medicine to develop models combining epigenomic and clinical data to predict disease.

11.
FASEB J ; 36(3): e22192, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35174906

RESUMEN

Modulating the number of muscle stems cells, called satellite cells, during early postnatal development produces long-term effects on muscle growth. We tested the hypothesis that high expression levels of the anti-aging protein Klotho in early postnatal myogenesis increase satellite cell numbers by influencing the epigenetic regulation of genes that regulate myogenesis. Our findings show that elevated klotho expression caused a transient increase in satellite cell numbers and slowed muscle fiber growth, followed by a period of accelerated muscle growth that leads to larger fibers. Klotho also transcriptionally downregulated the H3K27 demethylase Jmjd3, leading to increased H3K27 methylation and decreased expression of genes in the canonical Wnt pathway, which was associated with a delay in muscle differentiation. In addition, Klotho stimulation and Jmjd3 downregulation produced similar but not additive reductions in the expression of Wnt4, Wnt9a, and Wnt10a in myogenic cells, indicating that inhibition occurred through a common pathway. Together, our results identify a novel pathway through which Klotho influences myogenesis by reducing the expression of Jmjd3, leading to reductions in the expression of Wnt genes and inhibition of canonical Wnt signaling.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji/genética , Proteínas Klotho/metabolismo , Desarrollo de Músculos , Mioblastos/metabolismo , Animales , Línea Celular , Regulación hacia Abajo , Regulación del Desarrollo de la Expresión Génica , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas Klotho/genética , Ratones , Ratones Endogámicos C57BL , Mioblastos/citología , Vía de Señalización Wnt
12.
J Mol Cell Cardiol ; 160: 73-86, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34273410

RESUMEN

The temporal nature of chromatin structural changes underpinning pathologic transcription are poorly understood. We measured chromatin accessibility and DNA methylation to study the contribution of chromatin remodeling at different stages of cardiac hypertrophy and failure. ATAC-seq and reduced representation bisulfite sequencing were performed in cardiac myocytes after transverse aortic constriction (TAC) or depletion of the chromatin structural protein CTCF. Early compensation to pressure overload showed changes in chromatin accessibility and DNA methylation preferentially localized to intergenic and intronic regions. Most methylation and accessibility changes observed in enhancers and promoters at the late phase (3 weeks after TAC) were established at an earlier time point (3 days after TAC), before heart failure manifests. Enhancers were paired with genes based on chromatin conformation capture data: while enhancer accessibility generally correlated with changes in gene expression, this feature, nor DNA methylation, was alone sufficient to predict transcription of all enhancer interacting genes. Enrichment of transcription factors and active histone marks at these regions suggests that enhancer activity coordinates with other epigenetic factors to determine gene transcription. In support of this hypothesis, ChIP-qPCR demonstrated increased enhancer and promoter occupancy of GATA4 and NKX2.5 at Itga9 and Nppa, respectively, concomitant with increased transcription of these genes in the diseased heart. Lastly, we demonstrate that accessibility and DNA methylation are imperfect predictors of chromatin structure at the scale of A/B compartmentalization-rather, accessibility, DNA methylation, transcription factors and other histone marks work within these domains to determine gene expression. These studies establish that chromatin reorganization during early compensation after pathologic stimuli is maintained into the later decompensatory phases of heart failure. The findings reveal the rules for how local chromatin features govern gene expression in the context of global genomic structure and identify chromatin remodeling events for therapeutic targeting in disease.


Asunto(s)
Cardiomegalia/genética , Cardiomegalia/metabolismo , Ensamble y Desensamble de Cromatina/genética , Cromatina/genética , Cromatina/metabolismo , Epigénesis Genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Fenotipo , Animales , Metilación de ADN/genética , Modelos Animales de Enfermedad , Elementos de Facilitación Genéticos/genética , Expresión Génica , Histonas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Regiones Promotoras Genéticas/genética , Ratas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
J Hepatol ; 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33961941

RESUMEN

BACKGROUND & AIMS: A holistic insight on the relationship between obesity and metabolic dysfunction-associated fatty liver disease is an unmet clinical need. Omics investigations can be used to investigate the multifaceted role of altered mitochondrial pathways to promote nonalcoholic steatohepatitis, a major risk factor for liver disease-associated death. There are no specific treatments but remission via surgery might offer an opportunity to examine the signaling processes that govern the complex spectrum of chronic liver diseases observed in extreme obesity. We aim to assess the emerging relationship between metabolism, methylation and liver disease. METHODS: We tailed the flow of information, before and after steatohepatitis remission, from biochemical, histological, and multi-omics analyses in liver biopsies from patients with extreme obesity and successful bariatric surgery. Functional studies were performed in HepG2 cells and primary hepatocytes. RESULTS: The reversal of hepatic mitochondrial dysfunction and the control of oxidative stress and inflammatory responses revealed the regulatory role of mitogen-activated protein kinases. The reversible metabolic rearrangements leading to steatohepatitis increased the glutaminolysis-induced production of α-ketoglutarate and the hyperactivation of mammalian target of rapamycin complex 1. These changes were crucial for the adenosine monophosphate-activated protein kinase/mammalian target of rapamycin-driven pathways that modulated hepatocyte survival by coordinating apoptosis and autophagy. The signaling activity of α-ketoglutarate and the associated metabolites also affected methylation-related epigenomic remodeling enzymes. Integrative analysis of hepatic transcriptome signatures and differentially methylated genomic regions distinguished patients with and without steatohepatitis. CONCLUSION: We provide evidence supporting the multifaceted potential of the increased glutaminolysis-induced α-ketoglutarate production and the mammalian target of rapamycin complex 1 dysregulation as a conceivable source of the inefficient adaptive responses leading to steatohepatitis. LAY SUMMARY: Steatohepatitis is a frequent and threatening complication of extreme obesity without specific treatment. Omics technologies can be used to identify therapeutic targets. We highlight increased glutaminolysis-induced α-ketoglutarate production as a potential source of signals promoting and exacerbating steatohepatitis.

15.
Curr Cardiol Rep ; 23(5): 46, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33721129

RESUMEN

PURPOSE OF REVIEW: Technical advances have facilitated high-throughput measurements of the genome in the context of cardiovascular biology. These techniques bring a deluge of gargantuan datasets, which in turn present two fundamentally new opportunities for innovation-data processing and knowledge integration-toward the goal of meaningful basic and translational discoveries. RECENT FINDINGS: Big data, integrative analyses, and machine learning have brought cardiac investigations to the cutting edge of chromatin biology, not only to reveal basic principles of gene regulation in the heart, but also to aid in the design of targeted epigenetic therapies. SUMMARY: Cardiac studies using big data are only beginning to integrate the millions of recorded data points and the tools of machine learning are aiding this process. Future experimental design should take into consideration insights from existing genomic datasets, thereby focusing on heretofore unexplored epigenomic contributions to disease pathology.


Asunto(s)
Ciencia de los Datos , Genómica , Macrodatos , Regulación de la Expresión Génica , Humanos , Aprendizaje Automático
16.
Front Cell Dev Biol ; 9: 787684, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34988079

RESUMEN

Background: Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) can be used as a source for cell delivery to remuscularize the heart after myocardial infarction. Despite their therapeutic potential, the emergence of ventricular arrhythmias has limited their application. We previously developed a double reporter hESC line to isolate first heart field (FHF: TBX5 + NKX2-5 +) and second heart field (SHF: TBX5 - NKX2-5 + ) CMs. Herein, we explore the role of TBX5 and its effects on underlying gene regulatory networks driving phenotypical and functional differences between these two populations. Methods: We used a combination of tools and techniques for rapid and unsupervised profiling of FHF and SHF populations at the transcriptional, translational, and functional level including single cell RNA (scRNA) and bulk RNA sequencing, atomic force and quantitative phase microscopy, respirometry, and electrophysiology. Results: Gene ontology analysis revealed three biological processes attributed to TBX5 expression: sarcomeric structure, oxidative phosphorylation, and calcium ion handling. Interestingly, migratory pathways were enriched in SHF population. SHF-like CMs display less sarcomeric organization compared to FHF-like CMs, despite prolonged in vitro culture. Atomic force and quantitative phase microscopy showed increased cellular stiffness and decreased mass distribution over time in FHF compared to SHF populations, respectively. Electrophysiological studies showed longer plateau in action potentials recorded from FHF-like CMs, consistent with their increased expression of calcium handling genes. Interestingly, both populations showed nearly identical respiratory profiles with the only significant functional difference being higher ATP generation-linked oxygen consumption rate in FHF-like CMs. Our findings suggest that FHF-like CMs display more mature features given their enhanced sarcomeric alignment, calcium handling, and decreased migratory characteristics. Finally, pseudotime analyses revealed a closer association of the FHF population to human fetal CMs along the developmental trajectory. Conclusion: Our studies reveal that distinguishing FHF and SHF populations based on TBX5 expression leads to a significant impact on their downstream functional properties. FHF CMs display more mature characteristics such as enhanced sarcomeric organization and improved calcium handling, with closer positioning along the differentiation trajectory to human fetal hearts. These data suggest that the FHF CMs may be a more suitable candidate for cardiac regeneration.

17.
Gigascience ; 9(1)2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31972019

RESUMEN

BACKGROUND: In today's world of big data, computational analysis has become a key driver of biomedical research. High-performance computational facilities are capable of processing considerable volumes of data, yet often lack an easy-to-use interface to guide the user in supervising and adjusting bioinformatics analysis via a tablet or smartphone. RESULTS: To address this gap we proposed Telescope, a novel tool that interfaces with high-performance computational clusters to deliver an intuitive user interface for controlling and monitoring bioinformatics analyses in real-time. By leveraging last generation technology now ubiquitous to most researchers (such as smartphones), Telescope delivers a friendly user experience and manages conectivity and encryption under the hood. CONCLUSIONS: Telescope helps to mitigate the digital divide between wet and computational laboratories in contemporary biology. By delivering convenience and ease of use through a user experience not relying on expertise with computational clusters, Telescope can help researchers close the feedback loop between bioinformatics and experimental work with minimal impact on the performance of computational tools. Telescope is freely available at https://github.com/Mangul-Lab-USC/telescope.


Asunto(s)
Biología Computacional/métodos , Minería de Datos/métodos , Programas Informáticos , Macrodatos , Interfaz Usuario-Computador
18.
J Mol Cell Cardiol ; 128: 198-211, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30742811

RESUMEN

Heart failure is associated with hypertrophying of cardiomyocytes and changes in transcriptional activity. Studies from rapidly dividing cells in culture have suggested that transcription may be compartmentalized into factories within the nucleus, but this phenomenon has not been tested in vivo and the role of nuclear architecture in cardiac gene regulation is unknown. While alterations to transcription have been linked to disease, little is known about the regulation of the spatial organization of transcription and its properties in the pathological setting. In the present study, we investigate the structural features of endogenous transcription factories in the heart and determine the principles connecting chromatin structure to transcriptional regulation in vivo. Super-resolution imaging of endogenous RNA polymerase II clusters in neonatal and adult cardiomyocytes revealed distinct properties of transcription factories in response to pathological stress: neonatal nuclei demonstrated changes in number of clusters, with parallel increases in nuclear area, while the adult nuclei underwent changes in size and intensity of RNA polymerase II foci. Fluorescence in situ hybridization-based labeling of genes revealed locus-specific relationships between expression change and anatomical localization-with respect to nuclear periphery and heterochromatin regions, both sites associated with gene silencing-in the nuclei of cardiomyocytes in hearts (but not liver hepatocytes) of mice subjected to pathologic stimuli that induce heart failure. These findings demonstrate a role for chromatin organization and rearrangement of nuclear architecture for cell type-specific transcription in vivo during disease. RNA polymerase II ChIP and chromatin conformation capture studies in the same model system demonstrate formation and reorganization of distinct nuclear compartments regulating gene expression. These findings reveal locus-specific compartmentalization of stress-activated, housekeeping and silenced genes in the anatomical context of the endogenous nucleus, revealing basic principles of global chromatin structure and nuclear architecture in the regulation of gene expression in healthy and diseased conditions.


Asunto(s)
Insuficiencia Cardíaca/genética , Corazón/diagnóstico por imagen , ARN Polimerasa II/genética , Transcripción Genética/genética , Animales , Animales Recién Nacidos , Cromatina/genética , Cromatina/aislamiento & purificación , Regulación de la Expresión Génica , Corazón/fisiopatología , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/diagnóstico por imagen , Humanos , Hibridación Fluorescente in Situ , Ratones , Imagen Molecular/métodos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , ARN Polimerasa II/aislamiento & purificación , Activación Transcripcional/genética
19.
Circ Res ; 122(11): 1586-1607, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29798902

RESUMEN

If unifying principles could be revealed for how the same genome encodes different eukaryotic cells and for how genetic variability and environmental input are integrated to impact cardiovascular health, grand challenges in basic cell biology and translational medicine may succumb to experimental dissection. A rich body of work in model systems has implicated chromatin-modifying enzymes, DNA methylation, noncoding RNAs, and other transcriptome-shaping factors in adult health and in the development, progression, and mitigation of cardiovascular disease. Meanwhile, deployment of epigenomic tools, powered by next-generation sequencing technologies in cardiovascular models and human populations, has enabled description of epigenomic landscapes underpinning cellular function in the cardiovascular system. This essay aims to unpack the conceptual framework in which epigenomes are studied and to stimulate discussion on how principles of chromatin function may inform investigations of cardiovascular disease and the development of new therapies.


Asunto(s)
Enfermedades Cardiovasculares/genética , Cromatina/fisiología , Epigénesis Genética/fisiología , Epigenómica/tendencias , Enfermedades Cardiovasculares/terapia , Fenómenos Fisiológicos Cardiovasculares , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Metilación de ADN/fisiología , Epigenómica/métodos , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Histona Desacetilasas/fisiología , Histonas/fisiología , Humanos , Nucleosomas/genética , Nucleosomas/fisiología , ARN no Traducido/fisiología , Transcriptoma
20.
Front Cardiovasc Med ; 5: 186, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30697540

RESUMEN

Packaging of the genome in the nucleus is a non-random process that is thought to directly contribute to cell type-specific transcriptomes, although this hypothesis remains untested. Epigenome architecture, as assayed by chromatin conformation capture techniques, such as Hi-C, has recently been described in the mammalian cardiac myocyte and found to be remodeled in the setting of heart failure. In the present study, we sought to determine whether the structural features of the epigenome are conserved between different cell types by investigating Hi-C and RNA-seq data from heart and liver. Investigation of genes with enriched expression in heart or liver revealed nuanced interaction paradigms between organs: first, the log2 ratios of heart:liver (or liver:heart) intrachromosomal interactions are higher in organ-specific gene sets (p = 0.009), suggesting that organ-specific genes have specialized chromatin structural features. Despite similar number of total interactions between cell types, intrachromosomal interaction profiles in heart but not liver demonstrate that genes forming promoter-to-transcription-end-site loops in the cardiac nucleus tend to be involved in cardiac-related pathways. The same analysis revealed an analogous organ-specific interaction profile for liver-specific loop genes. Investigation of A/B compartmentalization (marker of chromatin accessibility) revealed that in the heart, 66.7% of cardiac-specific genes are in compartment A, while 66.1% of liver-specific genes are found in compartment B, suggesting that there exists a cardiac chromatin topology that allows for expression of cardiac genes. Analyses of interchromosomal interactions revealed a relationship between interchromosomal interaction count and organ-specific gene localization (p = 2.2 × 10-16) and that, for both organs, regions of active or inactive chromatin tend to segregate in 3D space (i.e., active with active, inactive with inactive). 3D models of topologically associating domains (TADs) suggest that TADs tend to interact with regions of similar compartmentalization across chromosomes, revealing trans structural interactions contributing to genomic compartmentalization at distinct structural scales. These models reveal discordant nuclear compaction strategies, with heart packaging compartment A genes preferentially toward the center of the nucleus and liver exhibiting preferential arrangement toward the periphery. Taken together, our data suggest that intra- and interchromosomal chromatin architecture plays a role in orchestrating tissue-specific gene expression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...