Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2024): 20240494, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864332

RESUMEN

Social organization, dispersal and fecundity coevolve, but whether they are genetically linked remains little known. Supergenes are prime candidates for coupling adaptive traits and mediating sex-specific trade-offs. Here, we test whether a supergene that controls social structure in Formica selysi also influences dispersal-related traits and fecundity within each sex. In this ant species, single-queen colonies contain only the ancestral supergene haplotype M and produce MM queens and M males, while multi-queen colonies contain the derived haplotype P and produce MP queens, PP queens and P males. By combining multiple experiments, we show that the M haplotype induces phenotypes with higher dispersal potential and higher fecundity in both sexes. Specifically, MM queens, MP queens and M males are more aerodynamic and more fecund than PP queens and P males, respectively. Differences between MP and PP queens from the same colonies reveal a direct genetic effect of the supergene on dispersal-related traits and fecundity. The derived haplotype P, associated with multi-queen colonies, produces queens and males with reduced dispersal abilities and lower fecundity. More broadly, similarities between the Formica and Solenopsis systems reveal that supergenes play a major role in linking behavioural, morphological and physiological traits associated with intraspecific social polymorphisms.


Asunto(s)
Distribución Animal , Hormigas , Fertilidad , Conducta Social , Animales , Hormigas/fisiología , Hormigas/genética , Masculino , Femenino , Haplotipos
2.
Front Microbiol ; 14: 1044286, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37213490

RESUMEN

Introduction: Insects share intimate relationships with microbes that play important roles in their biology. Yet our understanding of how host-bound microbial communities assemble and perpetuate over evolutionary time is limited. Ants host a wide range of microbes with diverse functions and are an emerging model for studying the evolution of insect microbiomes. Here, we ask whether phylogenetically related ant species have formed distinct and stable microbiomes. Methods: To answer this question, we investigated the microbial communities associated with queens of 14 Formica species from five clades, using deep coverage 16S rRNA amplicon sequencing. Results: We reveal that Formica species and clades harbor highly defined microbial communities that are dominated by four bacteria genera: Wolbachia, Lactobacillus, Liliensternia, and Spiroplasma. Our analysis reveals that the composition of Formica microbiomes mirrors the phylogeny of the host, i.e., phylosymbiosis, in that related hosts harbor more similar microbial communities. In addition, we find there are significant correlations between microbe co-occurrences. Discussion: Our results demonstrate Formica ants carry microbial communities that recapitulate the phylogeny of their hosts. Our data suggests that the co-occurrence of different bacteria genera may at least in part be due to synergistic and antagonistic interactions between microbes. Additional factors potentially contributing to the phylosymbiotic signal are discussed, including host phylogenetic relatedness, host-microbe genetic compatibility, modes of transmission, and similarities in host ecologies (e.g., diets). Overall, our results support the growing body of evidence that microbial community composition closely depends on the phylogeny of their hosts, despite bacteria having diverse modes of transmission and localization within the host.

3.
Curr Biol ; 33(6): R225-R228, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36977384

RESUMEN

The sudden appearance of small winged queens within a lineage of asexually reproducing ant workers reveals that such social parasites can appear abruptly. The parasitic queens differ in a large genomic region, suggesting that a supergene instantly equipped the social parasite with a suite of co-adapted traits.


Asunto(s)
Hormigas , Parásitos , Animales , Parásitos/genética , Hormigas/genética , Fenotipo , Genómica , Conducta Social
4.
J Invertebr Pathol ; 196: 107867, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36503887

RESUMEN

European foulbrood (EFB) is a honey bee brood disease caused by the bacterium Melissococcus plutonius. Large-scale EFB outbreaks have been reported in several countries in recent decades, which entail costly sanitation measures of affected apiaries to restrict the spread of this contagious pathogen. To mitigate its impact, a better understanding of the population dynamics of the etiological agent is required. We here used multi-locus sequence typing (MLST) to infer the genetic diversity and geographical distribution of 160 M. plutonius isolates collected from EFB symptomatic honey bee colonies seven years apart. Isolates belonged to three clonal complexes (CCs) known worldwide and to 12 sequence types (STs), of which five were novel. Phylogenetic and clustering analyses showed that some of these novel sequence types have likely evolved locally during a period of outbreak, but most disappeared again. We further screened the isolates for melissotoxin A (mtxA), a putative virulence gene. The prevalence of STs in which mtxA was frequent increased over time, suggesting that this gene promotes spread. Despite the increased frequency of this gene in the population, the total number of cases decreased, which could be due to stricter control measures implemented before the second sampling period. Our results provide a better understanding of M. plutonius population dynamics and help identify knowledge gaps that limit efficient control of this emerging disease.


Asunto(s)
Genética de Población , Abejas , Animales , Larva/microbiología , Tipificación de Secuencias Multilocus , Prevalencia , Filogenia
5.
Mol Ecol ; 32(5): 1062-1072, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36504171

RESUMEN

Supergenes are clusters of linked loci that control complex phenotypes, such as alternative forms of social organization in ants. Explaining the long-term maintenance of supergenes is challenging, particularly when the derived haplotype lacks homozygous lethality and causes gene drive. In the Alpine silver ant, Formica selysi, a large and ancient social supergene with two haplotypes, M and P, controls colony social organization. Single-queen colonies only contain MM females, while multiqueen colonies contain MP and PP females. The derived P haplotype, found only in multiqueen colonies, selfishly enhances its transmission through maternal effect killing, which could have led to its fixation. A population genetic model showed that a stable social polymorphism can only be maintained under a narrow set of conditions, which includes partial assortative mating by social form (which is known to occur in the wild), and low fitness of PP queens. With a combination of field and laboratory experiments, we show that the P haplotype has deleterious effects on female fitness. The survival rate of PP queens and workers was around half that of other genotypes. Moreover, P-carrying queens had lower fertility and fecundity compared to other queens. We discuss how cryptic lethal effects of the P haplotype help stabilize this ancient polymorphism.


Asunto(s)
Hormigas , Animales , Femenino , Hormigas/genética , Polimorfismo Genético/genética , Genotipo , Haplotipos/genética , Reproducción/genética , Conducta Social
6.
Evolution ; 76(9): 2105-2115, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35802833

RESUMEN

Identifying mechanisms limiting hybridization is a central goal of speciation research. Here, we studied premating and postmating barriers to hybridization between two ant species, Formica selysi and Formica cinerea. These species hybridize in the Rhône valley in Switzerland, where they form a mosaic hybrid zone, with limited introgression from F. selysi into F. cinerea. There was no sign of temporal isolation between the two species in the production of queens and males. With choice experiments, we showed that queens and males strongly prefer to mate with conspecifics. Yet, we did not detect postmating barriers caused by genetic incompatibilities. Specifically, hybrids of all sexes and castes were found in the field and F1 hybrid workers did not show reduced viability compared to nonhybrid workers. To gain insights into the cues involved in species recognition, we analyzed the cuticular hydrocarbons (CHCs) of queens, males, and workers and staged dyadic encounters between workers. CHC profiles differed markedly between species, but were similar in F. cinerea and hybrids. Accordingly, workers also discriminated species, but they did not discriminate F. cinerea and hybrids. We discuss how the CHC-based recognition system of ants may facilitate the establishment of premating barriers to hybridization, independent of hybridization costs.


Asunto(s)
Hormigas , Animales , Hormigas/genética , Hibridación Genética , Hidrocarburos , Masculino , Reconocimiento en Psicología , Reproducción
7.
ISME J ; 16(9): 2114-2122, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35701539

RESUMEN

Ants are among the most successful organisms on Earth. It has been suggested that forming symbioses with nutrient-supplementing microbes may have contributed to their success, by allowing ants to invade otherwise inaccessible niches. However, it is unclear whether ants have evolved symbioses repeatedly to overcome the same nutrient limitations. Here, we address this question by comparing the independently evolved symbioses in Camponotus, Plagiolepis, Formica and Cardiocondyla ants. Our analysis reveals the only metabolic function consistently retained in all of the symbiont genomes is the capacity to synthesise tyrosine. We also show that in certain multi-queen lineages that have co-diversified with their symbiont for millions of years, only a fraction of queens carry the symbiont, suggesting ants differ in their colony-level reliance on symbiont-derived resources. Our results imply that symbioses can arise to solve common problems, but hosts may differ in their dependence on symbionts, highlighting the evolutionary forces influencing the persistence of long-term endosymbiotic mutualisms.


Asunto(s)
Hormigas , Animales , Filogenia , Simbiosis
8.
Philos Trans R Soc Lond B Biol Sci ; 377(1856): 20210197, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35694754

RESUMEN

Supergenes often have multiple phenotypic effects, including unexpected detrimental ones, because recombination suppression maintains associations among co-adapted alleles but also allows the accumulation of recessive deleterious mutations and selfish genetic elements. Yet, supergenes often persist over long evolutionary periods. How are such polymorphisms maintained in the face of selection, drive and drift? We present a population genetic model that investigates the conditions necessary for a stable polymorphic equilibrium when one of the supergene haplotypes is a selfish genetic element. The model fits the characteristics of the Alpine silver ant, Formica selysi, in which a large supergene underlies colony social organization, and one haplotype distorts Mendelian transmission by killing progeny that did not inherit it. The model shows that such maternal-effect killing strongly limits the maintenance of social polymorphism. Under random mating, transmission ratio distortion prevents rare single-queen colonies from invading populations of multiple-queen colonies, regardless of the fitness of each genotype. A stable polymorphic equilibrium can, however, be reached when high rates of assortative mating are combined with large fitness differences among supergene genotypes. The model reveals that the persistence of the social polymorphism is non-trivial and expected to occur only under restrictive conditions that deserve further empirical investigation. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.


Asunto(s)
Hormigas , Animales , Hormigas/genética , Evolución Biológica , Genotipo , Haplotipos , Polimorfismo Genético
9.
Ecol Evol ; 12(5): e8813, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35600679

RESUMEN

Studying patterns of population structure across the landscape sheds light on dispersal and demographic processes, which helps to inform conservation decisions. Here, we study how social organization and landscape factors affect spatial patterns of genetic differentiation in an ant species living in mountainous regions. Using genome-wide SNP markers, we assess population structure in the Alpine silver ant, Formica selysi. This species has two social forms controlled by a supergene. The monogyne form has one queen per colony, while the polygyne form has multiple queens per colony. The two social forms co-occur in the same populations. For both social forms, we found a strong pattern of isolation-by-distance across the Alps. Within regions, genetic differentiation between populations was weaker for the monogyne form than for the polygyne form. We suggest that this pattern is due to higher dispersal and effective population sizes in the monogyne form. In addition, we found stronger isolation-by-distance and lower genetic diversity in high elevation populations, compared to lowland populations, suggesting that gene flow between F. selysi populations in the Alps occurs mostly through riparian corridors along lowland valleys. Overall, this survey highlights the need to consider intraspecific polymorphisms when assessing population connectivity and calls for special attention to the conservation of lowland habitats in mountain regions.

10.
Proc Biol Sci ; 288(1949): 20210118, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33906407

RESUMEN

The coevolution between dispersal and sociality can lead to linked polymorphisms in both traits, which may favour the emergence of supergenes. Supergenes have recently been found to control social organization in several ant lineages. Whether and how these 'social supergenes' also control traits related to dispersal is yet unknown. Our goal here was to get a comprehensive view of the dispersal mechanisms associated with supergene-controlled alternative social forms in the ant Formica selysi. We measured the production and emission of young females and males by single-queen (monogyne) and multiple-queen (polygyne) colonies, the composition of mating aggregations, and the frequency of crosses within and between social forms in the wild. We found that males and females from alternative social forms did not display strong differences in their propensity to leave the nest and disperse, nor in their mating behaviour. Instead, the social forms differed substantially in sex allocation. Monogyne colonies produced 90% of the females flying to swarms, whereas 57% of the males in swarms originated from polygyne colonies. Most crosses were assortative with respect to social form. However, 20% of the monogyne females did mate with polygyne males, which is surprising as this cross has never been found in mature monogyne colonies. We suggest that the polygyny-determining haplotype free rides on monogyne females, who establish independent colonies that later become polygyne. By identifying the steps in dispersal where the social forms differ, this study sheds light on the behavioural and colony-level traits linking dispersal and sociality through supergenes.


Asunto(s)
Hormigas , Animales , Hormigas/genética , Femenino , Haplotipos , Masculino , Polimorfismo Genético , Reproducción , Conducta Social
11.
BMC Ecol Evol ; 21(1): 24, 2021 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-33583395

RESUMEN

BACKGROUND: Social insects vary widely in social organization, yet the genetical and ecological factors influencing this variation remain poorly known. In particular, whether spatially varying selection influences the maintenance of social polymorphisms in ants has been rarely investigated. To fill this gap, we examined whether fine-scale habitat heterogeneity contributes to the co-existence of alternative forms of social organization within populations. Single-queen colonies (monogyne social form) are generally associated with better colonization abilities, whereas multiple-queen colonies (polygyne social form) are predicted to be better competitors and monopolize saturated habitats. We hypothesize that each social form colonizes and thrives in distinct local habitats, as a result of their alternative dispersal and colony founding strategies. Here, we test this hypothesis in the Alpine silver ant, in which a supergene controls polymorphic social organization. RESULTS: Monogyne and polygyne colonies predominate in distinct habitats of the same population. The analysis of 59 sampling plots distributed across six habitats revealed that single-queen colonies mostly occupy unconnected habitats that were most likely reached by flight. This includes young habitats isolated by water and old habitats isolated by vegetation. In contrast, multiple-queen colonies were abundant in young, continuous and saturated habitats. Hence, alternative social forms colonize and monopolize distinct niches at a very local scale. CONCLUSIONS: Alternative social forms colonized and monopolized different local habitats, in accordance with differences in colonization and competition abilities. The monogyne social form displays a colonizer phenotype, by efficiently occupying empty habitats, while the polygyne social form exhibits a competitor phenotype, thriving in saturated habitats. The combination of the two phenotypes, coupled with fine-scale habitat heterogeneity, may allow the coexistence of alternative social forms within populations. Overall, these results suggest that spatially varying selection may be one of the mechanisms contributing to the maintenance of genetic polymorphisms in social organization.


Asunto(s)
Hormigas , Animales , Ecosistema , Polimorfismo Genético
12.
Behav Ecol Sociobiol ; 75(12): 165, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35035032

RESUMEN

ABSTRACT: Key social traits, like queen number in eusocial insect colonies, have long been considered plastic, but the recent finding that colony social organization is under strict genetic control in multiple ant lineages challenges this view. This begs the question of which hardwired behavioral mechanism(s) generate alternative forms of social organization during colony development. We addressed this question in the Alpine silver ant, Formica selysi, a species with two social forms determined by a supergene. Queens that carry exclusively the M haplotype are produced by and live in monogyne (= single-queen) colonies, whereas queens that carry at least one copy of the P haplotype are produced by and live in polygyne (= multiple-queen) colonies. With extensive field samplings and laboratory experiments, we show that both types of queens successfully establish colonies independently, without being accompanied by workers, but that they do so in contrasting ways. Monogyne queens were generally intolerant of other queens and founded colonies solitarily, whereas polygyne queens were mutually attracted to each other and mainly founded colonies cooperatively. These associations persisted for months after worker emergence, suggesting that cooperative colony-founding leads to permanent multiple queening. Overall, our study shows that queens of each social form found colonies independently in the field but that P-carrying queens are more likely to cooperate, thereby contributing to perpetuate alternative forms of social organization. SIGNIFICANCE STATEMENT: Understanding the genetic and behavioral underpinnings of social organization is a major goal in evolutionary biology. Recent studies have shown that colony social organization is controlled by supergenes in multiple ant lineages. But the behavioral processes linking the genotype of a queen to the type of colony she will form remain largely unknown. Here, we show that in Alpine silver ants, alternative supergene genotypes are associated with different levels of social attraction and tolerance in young queens. These hardwired differences in social traits make queens carrying the P supergene haplotype more prone to cooperate and form durable associations during independent colony-founding. These findings help explain how genetic variants induce alternative forms of social organization during the ontogeny of a colony. They also illustrate how simple phenotypic differences at the individual level can result in large differences at higher levels of organization. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00265-021-03105-1.

13.
Proc Natl Acad Sci U S A ; 117(29): 17130-17134, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32636262

RESUMEN

Supergenes underlie striking polymorphisms in nature, yet the evolutionary mechanisms by which they arise and persist remain enigmatic. These clusters of linked loci can spread in populations because they captured coadapted alleles or by selfishly distorting the laws of Mendelian inheritance. Here, we show that the supergene haplotype associated with multiple-queen colonies in Alpine silver ants is a maternal effect killer. All eggs from heterozygous queens failed to hatch when they did not inherit this haplotype. Hence, the haplotype specific to multiple-queen colonies is a selfish genetic element that enhances its own transmission by causing developmental arrest of progeny that do not carry it. At the population level, such transmission ratio distortion favors the spread of multiple-queen colonies, to the detriment of the alternative haplotype associated with single-queen colonies. Hence, selfish gene drive by one haplotype will impact the evolutionary dynamics of alternative forms of colony social organization. This killer hidden in a social supergene shows that large nonrecombining genomic regions are prone to cause multifarious effects across levels of biological organization.


Asunto(s)
Hormigas/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genes de Insecto/genética , Herencia Materna/genética , Conducta Social , Animales , Hormigas/crecimiento & desarrollo , Hormigas/fisiología , Evolución Molecular , Femenino , Haplotipos/genética , Masculino , Meiosis/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética
14.
Virulence ; 11(1): 554-567, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32456539

RESUMEN

MELISSOCOCCUS PLUTONIUS: is a bacterial pathogen that causes epidemic outbreaks of European foulbrood (EFB) in honey bee populations. The pathogenicity of a bacterium depends on its virulence, and understanding the mechanisms influencing virulence may allow for improved disease control and containment. Using a standardized in vitro assay, we demonstrate that virulence varies greatly among sixteen M. plutonius isolates from five European countries. Additionally, we explore the causes of this variation. In this study, virulence was independent of the multilocus sequence type of the tested pathogen, and was not affected by experimental co-infection with Paenibacillus alvei, a bacterium often associated with EFB outbreaks. Virulence in vitro was correlated with the growth dynamics of M. plutonius isolates in artificial medium, and with the presence of a plasmid carrying a gene coding for the putative toxin melissotoxin A. Our results suggest that some M. plutonius strains showed an increased virulence due to the acquisition of a toxin-carrying mobile genetic element. We discuss whether strains with increased virulence play a role in recent EFB outbreaks.


Asunto(s)
Abejas/microbiología , Enterococcaceae/genética , Enterococcaceae/patogenicidad , Infecciones por Bacterias Grampositivas/veterinaria , Animales , Toxinas Bacterianas/genética , Técnicas de Tipificación Bacteriana , Infecciones por Bacterias Grampositivas/microbiología , Secuencias Repetitivas Esparcidas , Larva/microbiología , Tipificación de Secuencias Multilocus , Plásmidos/genética , Virulencia
15.
Curr Biol ; 30(2): 304-311.e4, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31902719

RESUMEN

Supergenes, clusters of tightly linked genes, play a key role in the evolution of complex adaptive variation [1, 2]. Although supergenes have been identified in many species, we lack an understanding of their origin, evolution, and persistence [3]. Here, we uncover 20-40 Ma of evolutionary history of a supergene associated with polymorphic social organization in Formica ants [4]. We show that five Formica species exhibit homologous divergent haplotypes spanning 11 Mbp on chromosome 3. Despite the supergene's size, only 142 single nucleotide polymorphisms (SNPs) consistently distinguish alternative supergene haplotypes across all five species. These conserved trans-species SNPs are localized in a small number of disjunct clusters distributed across the supergene. This unexpected pattern of divergence indicates that the Formica supergene does not follow standard models of sex chromosome evolution, in which distinct evolutionary strata reflect an expanding region of suppressed recombination [5]. We propose an alternative "eroded strata model" in which clusters of conserved trans-species SNPs represent functionally important areas maintained by selection in the face of rare recombination between ancestral haplotypes. The comparison of whole-genome sequences across 10 additional Formica species reveals that the most conserved region of the supergene contains a transcription factor essential for motor neuron development in Drosophila [6]. The discovery that a very small portion of this large and ancient supergene harbors conserved trans-species SNPs linked to colony social organization suggests that the ancestral haplotypes have been eroded by recombination, with selection preserving differentiation at one or a few genes generating alternative social organization.


Asunto(s)
Hormigas/genética , Proteínas de Insectos/genética , Polimorfismo de Nucleótido Simple , Factores de Transcripción/genética , Animales , Haplotipos , Proteínas de Insectos/metabolismo , Cromosomas Sexuales/genética , Factores de Transcripción/metabolismo
16.
Biol Lett ; 16(1): 20190730, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31964258

RESUMEN

Cooperative breeding animals frequently inhabit harsh environments. It is widely accepted that harsh environments hinder independent reproduction, and this constraint maintains individuals in family groups. Yet the assumption that harsh ecological conditions reduce the success of members of cooperative breeding groups when breeding independently has not been experimentally tested. We addressed this shortcoming using the socially polymorphic Alpine silver ant, Formica selysi. This species has single-queen (independent breeders) and multiple-queen (cooperative breeders) colonies coexisting within populations. We placed newly mated queens emerging from each type of colony to breed alone in either a harsh or mild winter condition and recorded their brood production and survival. Queens emerging from single-queen colonies were unaffected by the winter condition and were more successful at founding a nest independently than queens from multiple-queen colonies. By contrast, queens from multiple-queen colonies had higher mortality after a harsh than after a mild winter. These results support the long-held assumption that harsh environments constrain independent reproduction of members of cooperative breeding groups.


Asunto(s)
Hormigas , Conducta Sexual Animal , Conducta Social , Animales , Cruzamiento , Genética de Población , Reproducción
17.
J Evol Biol ; 32(7): 742-748, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31016785

RESUMEN

Disassortative mating is a powerful mechanism stabilizing polymorphisms at sex chromosomes and other supergenes. The Alpine silver ant, Formica selysi, has two forms of social organization-single-queen and multiple-queen colonies-determined by alternate haplotypes at a large supergene. Here, we explore whether mate preference contributes to the maintenance of the genetic polymorphism at the social supergene. With mate choice experiments, we found that females and males mated randomly with respect to social form. Moreover, queens were able to produce offspring irrespective of whether they had mated with a male from the same or the alternative social form. Yet, females originating from single-queen colonies were more fertile, suggesting that they may be more successful at independent colony founding. We conclude that the pattern of asymmetric assortative mating documented from mature F. selysi colonies in the field is not caused by mate preferences or major genetic incompatibilities between social forms. More generally, we found no evidence that disassortative mate preference contributes to the maintenance of polymorphism at this supergene controlling ant social organization.


Asunto(s)
Hormigas/genética , Hormigas/fisiología , Evolución Biológica , Conducta Sexual Animal , Conducta Social , Animales , Femenino , Haplotipos , Masculino , Polimorfismo Genético
18.
Mol Ecol ; 28(6): 1428-1438, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30003603

RESUMEN

Nonrecombining genomic variants underlie spectacular social polymorphisms, from bird mating systems to ant social organization. Because these "social supergenes" affect multiple phenotypic traits linked to survival and reproduction, explaining their persistence remains a substantial challenge. Here, we investigate how large nonrecombining genomic variants relate to colony social organization, mating system and dispersal in the Alpine silver ant, Formica selysi. The species has colonies headed by a single queen (monogynous) and colonies headed by multiple queens (polygynous). We confirmed that a supergene with alternate haplotypes-Sm and Sp-underlies this polymorphism in social structure: Females from mature monogynous colonies had the Sm/Sm genotype, while those from polygynous colonies were Sm/Sp and Sp/Sp. Queens heading monogynous colonies were exclusively mated with Sm males. In contrast, queens heading polygynous colonies were mated with Sp males and Sm males. Sm males, which are only produced by monogynous colonies, accounted for 22.9% of the matings with queens from mature polygynous colonies. This asymmetry between social forms in the degree of assortative mating generates unidirectional male-mediated gene flow from the monogynous to the polygynous social form. Biased gene flow was confirmed by a significantly higher number of private alleles in the polygynous social form. Moreover, heterozygous queens were three times as likely as homozygous queens to be multiply mated. This study reveals that the supergene variants jointly affect social organization and multiple components of the mating system that alter the transmission of the variants and thus influence the dynamics of the system.


Asunto(s)
Hormigas/genética , Genética de Población , Variación Estructural del Genoma/genética , Reproducción/genética , Alelos , Animales , Femenino , Flujo Génico , Genotipo , Heterocigoto , Masculino , Matrimonio , Repeticiones de Microsatélite/genética , Conducta Sexual Animal
19.
Sci Rep ; 7(1): 16262, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29176649

RESUMEN

Ant queens often associate to found new colonies, yet the benefits of this behaviour remain unclear. A major hypothesis is that queens founding in groups are protected by social immunity and can better resist disease than solitary queens, due to mutual grooming, sharing of antimicrobials, or higher genetic diversity among their workers. We tested this hypothesis by manipulating the number of queens in incipient colonies of Lasius niger and measuring their resistance to the fungal entomopathogen Metarhizium brunneum. We found no evidence for social immunity in associations of founding queens. First, co-founding queens engaged in self-grooming, but performed very little allo-grooming or trophallaxis. Second, co-founding queens did not exhibit higher pathogen resistance than solitary queens, and their respective workers did not differ in disease resistance. Finally, queens founding in groups increased their investment in a component of individual immunity, as expected if they do not benefit from social immunity but respond to a higher risk of disease. Overall, our results provide no evidence that joint colony founding by L. niger queens increases their ability to resist fungal pathogens.


Asunto(s)
Hormigas/fisiología , Conducta Animal/fisiología , Animales , Femenino , Reproducción/fisiología , Conducta Social
20.
Ecol Evol ; 7(7): 2249-2254, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28405288

RESUMEN

Wood ants fight pathogens by incorporating tree resin with antimicrobial properties into their nests. They also produce large quantities of formic acid in their venom gland, which they readily spray to defend or disinfect their nest. Mixing chemicals to produce powerful antibiotics is common practice in human medicine, yet evidence for the use of such "defensive cocktails" by animals remains scant. Here, we test the hypothesis that wood ants enhance the antifungal activity of tree resin by treating it with formic acid. In a series of experiments, we document that (i) tree resin had much higher inhibitory activity against the common entomopathogenic fungus Metarhizium brunneum after having been in contact with ants, while no such effect was detected for other nest materials; (ii) wood ants applied significant amounts of endogenous formic and succinic acid on resin and other nest materials; and (iii) the application of synthetic formic acid greatly increased the antifungal activity of resin, but had no such effect when applied to inert glass material. Together, these results demonstrate that wood ants obtain an effective protection against a detrimental microorganism by mixing endogenous and plant-acquired chemical defenses. In conclusion, the ability to synergistically combine antimicrobial substances of diverse origins is not restricted to humans and may play an important role in insect societies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA