Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464100

RESUMEN

Doublecortin (DCX) is a microtubule-associated protein critical for brain development. Although most highly expressed in the developing central nervous system, the molecular function of DCX in neuron morphogenesis remains unknown and controversial. We demonstrate that DCX function is intimately linked to its microtubule-binding activity. By using human induced pluripotent stem cell (hiPSC)- derived cortical i 3 Neurons genome engineered to express mEmerald-tagged DCX from the endogenous locus, we find that DCX-MT interactions become highly polarized very early during neuron morphogenesis. DCX becomes enriched only on straight microtubules in advancing growth cones with approximately 120 DCX molecules bound per micrometer of growth cone microtubule. At a similar saturation, microtubule-bound DCX molecules begin to impede lysosome transport, and thus can potentially control growth cone organelle entry. In addition, by comparing control, DCX-mEmerald and knockout DCX -/Y i 3 Neurons, we find that DCX stabilizes microtubules in the growth cone peripheral domain by reducing the microtubule catastrophe frequency and the depolymerization rate. DCX -/Y i 3 Neuron morphogenesis was inhibited in soft microenvironments that mimic the viscoelasticity of brain tissue and DCX -/Y neurites failed to grow toward brain-derived neurotrophic factor (BDNF) gradients. Together with high resolution traction force microscopy data, we propose a model in which DCX-decorated, rigid growth cone microtubules provide intracellular mechanical resistance to actomyosin generated contractile forces in soft physiological environments in which weak and transient adhesion-mediated forces in the growth cone periphery may be insufficient for productive growth cone advance. These data provide a new mechanistic understanding of how DCX mutations cause lissencephaly-spectrum brain malformations by impacting growth cone dynamics during neuron morphogenesis in physiological environments.

2.
Elife ; 122023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36715499

RESUMEN

A challenge in analyzing dynamic intracellular cell biological processes is the dearth of methodologies that are sufficiently fast and specific to perturb intracellular protein activities. We previously developed a light-sensitive variant of the microtubule plus end-tracking protein EB1 by inserting a blue light-controlled protein dimerization module between functional domains. Here, we describe an advanced method to replace endogenous EB1 with this light-sensitive variant in a single genome editing step, thereby enabling this approach in human induced pluripotent stem cells (hiPSCs) and hiPSC-derived neurons. We demonstrate that acute and local optogenetic EB1 inactivation in developing cortical neurons induces microtubule depolymerization in the growth cone periphery and subsequent neurite retraction. In addition, advancing growth cones are repelled from areas of blue light exposure. These phenotypes were independent of the neuronal EB1 homolog EB3, revealing a direct dynamic role of EB1-mediated microtubule plus end interactions in neuron morphogenesis and neurite guidance.


Asunto(s)
Células Madre Pluripotentes Inducidas , Proteínas Asociadas a Microtúbulos , Humanos , Genómica , Conos de Crecimiento/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Unión Proteica
3.
JCI Insight ; 6(9)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33872220

RESUMEN

The microtubule (MT) cytoskeleton plays a critical role in axon growth and guidance. Here, we identify the MT-severing enzyme fidgetin-like 2 (FL2) as a negative regulator of axon regeneration and a therapeutic target for promoting nerve regeneration after injury. Genetic knockout of FL2 in cultured adult dorsal root ganglion neurons resulted in longer axons and attenuated growth cone retraction in response to inhibitory molecules. Given the axonal growth-promoting effects of FL2 depletion in vitro, we tested whether FL2 could be targeted to promote regeneration in a rodent model of cavernous nerve (CN) injury. The CNs are parasympathetic nerves that regulate blood flow to the penis, which are commonly damaged during radical prostatectomy (RP), resulting in erectile dysfunction (ED). Application of FL2-siRNA after CN injury significantly enhanced functional nerve recovery. Remarkably, following bilateral nerve transection, visible and functional nerve regeneration was observed in 7 out of 8 animals treated with FL2-siRNA, while no control-treated animals exhibited regeneration. These studies identify FL2 as a promising therapeutic target for enhancing regeneration after peripheral nerve injury and for mitigating neurogenic ED after RP - a condition for which, at present, only poor treatment options exist.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/fisiología , Orientación del Axón/genética , Axones/metabolismo , Ganglios Espinales/citología , Proteínas Asociadas a Microtúbulos/fisiología , Regeneración Nerviosa/genética , Neuronas/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Animales , Células Cultivadas , Masculino , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos , Pene/inervación , Prostatectomía , Interferencia de ARN , ARN Interferente Pequeño
4.
Mol Biol Cell ; 32(2): 131-142, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33237838

RESUMEN

Many lysosome functions are determined by a lumenal pH of ∼5.0, including the activity of resident acid-activated hydrolases. Lysosome pH (pHlys) is often increased in neurodegenerative disorders and predicted to be decreased in cancers, making it a potential target for therapeutics to limit the progression of these diseases. Accurately measuring pHlys, however, is limited by currently used dyes that accumulate in multiple intracellular compartments and cannot be propagated in clonal cells for longitudinal studies or used for in vivo determinations. To resolve this limitation, we developed a genetically encoded ratiometric pHlys biosensor, pHLARE (pH Lysosomal Activity REporter), which localizes predominantly in lysosomes, has a dynamic range of pH 4.0 to 6.5, and can be stably expressed in cells. Using pHLARE we show decreased pHlys with inhibiting activity of the mammalian target of rapamycin complex 1 (mTORC1). Also, cancer cells from different tissue origins have a lower pHlys than untransformed cells, and stably expressing oncogenic RasV12 in untransformed cells is sufficient to decrease pHlys. pHLARE is a new tool to accurately measure pHlys for improved understanding of lysosome dynamics, which is increasingly considered a therapeutic target.


Asunto(s)
Técnicas Biosensibles , Lisosomas/metabolismo , Neoplasias/metabolismo , Animales , Calibración , Línea Celular Tumoral , Transformación Celular Neoplásica/patología , Humanos , Concentración de Iones de Hidrógeno , Ratas , Reproducibilidad de los Resultados
5.
J Biol Chem ; 294(22): 8779-8790, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-30992364

RESUMEN

Tau, a member of the MAP2/tau family of microtubule-associated proteins, stabilizes and organizes axonal microtubules in healthy neurons. In neurodegenerative tauopathies, tau dissociates from microtubules and forms neurotoxic extracellular aggregates. MAP2/tau family proteins are characterized by three to five conserved, intrinsically disordered repeat regions that mediate electrostatic interactions with the microtubule surface. Here, we used molecular dynamics, microtubule-binding experiments, and live-cell microscopy, revealing that highly-conserved histidine residues near the C terminus of each microtubule-binding repeat are pH sensors that can modulate tau-microtubule interaction strength within the physiological intracellular pH range. We observed that at low pH (<7.5), these histidines are positively charged and interact with phenylalanine residues in a hydrophobic cleft between adjacent tubulin dimers. At higher pH (>7.5), tau deprotonation decreased binding to microtubules both in vitro and in cells. Electrostatic and hydrophobic characteristics of histidine were both required for tau-microtubule binding, as substitutions with constitutively and positively charged nonaromatic lysine or uncharged alanine greatly reduced or abolished tau-microtubule binding. Consistent with these findings, tau-microtubule binding was reduced in a cancer cell model with increased intracellular pH but was rapidly restored by decreasing the pH to normal levels. These results add detailed insights into the intracellular regulation of tau activity that may be relevant in both normal and pathological conditions.


Asunto(s)
Histidina/metabolismo , Microtúbulos/metabolismo , Proteínas tau/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular Tumoral , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Electricidad Estática , Proteínas tau/genética
6.
Nat Cell Biol ; 20(3): 252-261, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29379139

RESUMEN

End-binding proteins (EBs) are adaptors that recruit functionally diverse microtubule plus-end-tracking proteins (+TIPs) to growing microtubule plus ends. To test with high spatial and temporal accuracy how, when and where +TIP complexes contribute to dynamic cell biology, we developed a photo-inactivated EB1 variant (π-EB1) by inserting a blue-light-sensitive protein-protein interaction module between the microtubule-binding and +TIP-binding domains of EB1. π-EB1 replaces endogenous EB1 function in the absence of blue light. By contrast, blue-light-mediated π-EB1 photodissociation results in rapid +TIP complex disassembly, and acutely and reversibly attenuates microtubule growth independent of microtubule end association of the microtubule polymerase CKAP5 (also known as ch-TOG and XMAP215). Local π-EB1 photodissociation allows subcellular control of microtubule dynamics at the second and micrometre scale, and elicits aversive turning of migrating cancer cells. Importantly, light-mediated domain splitting can serve as a template to optically control other intracellular protein activities.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Movimiento Celular , Neoplasias Pulmonares/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Optogenética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/efectos de la radiación , Microtúbulos/genética , Microtúbulos/patología , Microtúbulos/efectos de la radiación , Fotólisis , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Factores de Tiempo , Imagen de Lapso de Tiempo
7.
Nat Commun ; 8(1): 578, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28924218

RESUMEN

Coronary artery anomalies may cause life-threatening cardiac complications; however, developmental mechanisms underpinning coronary artery formation remain ill-defined. Here we identify an angiogenic cell population for coronary artery formation in mice. Regulated by a DLL4/NOTCH1/VEGFA/VEGFR2 signaling axis, these angiogenic cells generate mature coronary arteries. The NOTCH modulator POFUT1 critically regulates this signaling axis. POFUT1 inactivation disrupts signaling events and results in excessive angiogenic cell proliferation and plexus formation, leading to anomalous coronary arteries, myocardial infarction and heart failure. Simultaneous VEGFR2 inactivation fully rescues these defects. These findings show that dysregulated angiogenic precursors link coronary anomalies to ischemic heart disease.Though coronary arteries are crucial for heart function, the mechanisms guiding their formation are largely unknown. Here, Wang et al. identify a unique, endocardially-derived angiogenic precursor cell population for coronary artery formation in mice and show that a DLL4/NOTCH1/VEGFA/VEGFR2 signaling axis is key for coronary artery development.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Fucosiltransferasas/genética , Neovascularización Fisiológica/genética , Transducción de Señal/genética , Animales , Proliferación Celular/genética , Enfermedad de la Arteria Coronaria/fisiopatología , Ecocardiografía , Fucosiltransferasas/deficiencia , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor 2 de Factores de Crecimiento Endotelial Vascular/deficiencia , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/deficiencia , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética
8.
Adv Wound Care (New Rochelle) ; 5(10): 444-454, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27785378

RESUMEN

Significance: Fast and seamless healing is essential for both deep and chronic wounds to restore the skin and protect the body from harmful pathogens. Thus, finding new targets that can both expedite and enhance the repair process without altering the upstream signaling milieu and causing serious side effects can improve the way we treat wounds. Since cell migration is key during the different stages of wound healing, it presents an ideal process and intracellular structural machineries to target. Recent Advances and Critical Issues: The microtubule (MT) cytoskeleton is rising as an important structural and functional regulator of wound healing. MTs have been reported to play different roles in the migration of the various cell types involved in wound healing. Specific microtubule regulatory proteins (MRPs) can be targeted to alter a section or subtype of the MT cytoskeleton and boost or hinder cell motility. However, inhibiting intracellular components can be challenging in vivo, especially using unstable molecules, such as small interfering RNA. Nanoparticles can be used to protect these unstable molecules and topically deliver them to the wound. Utilizing this approach, we recently showed that fidgetin-like 2, an uncharacterized MRP, can be targeted to enhance cell migration and wound healing. Future Directions: To harness the full potential of the current MRP therapeutic targets, studies should test them with different delivery platforms, dosages, and skin models. Screening for new MT effectors that boost cell migration in vivo would also help find new targets for skin repair.

9.
J Invest Dermatol ; 135(9): 2309-2318, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25756798

RESUMEN

Wound healing is a complex process driven largely by the migration of a variety of distinct cell types from the wound margin into the wound zone. In this study, we identify the previously uncharacterized microtubule-severing enzyme, Fidgetin-like 2 (FL2), as a fundamental regulator of cell migration that can be targeted in vivo using nanoparticle-encapsulated small interfering RNA (siRNA) to promote wound closure and regeneration. In vitro, depletion of FL2 from mammalian tissue culture cells results in a more than twofold increase in the rate of cell movement, in part due to a significant increase in directional motility. Immunofluorescence analyses indicate that FL2 normally localizes to the cell edge, importantly to the leading edge of polarized cells, where it regulates the organization and dynamics of the microtubule cytoskeleton. To clinically translate these findings, we utilized a nanoparticle-based siRNA delivery platform to locally deplete FL2 in both murine full-thickness excisional and burn wounds. Topical application of FL2 siRNA nanoparticles to either wound type results in a significant enhancement in the rate and quality of wound closure both clinically and histologically relative to controls. Taken together, these results identify FL2 as a promising therapeutic target to promote the regeneration and repair of cutaneous wounds.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , ARN Interferente Pequeño/farmacología , Cicatrización de Heridas/fisiología , Heridas y Lesiones/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Biopsia con Aguja , Western Blotting , Movimiento Celular , Células Cultivadas , Modelos Animales de Enfermedad , Inmunohistoquímica , Ratones , Proteínas Asociadas a Microtúbulos , Microtúbulos/efectos de los fármacos , Nanopartículas , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Heridas y Lesiones/tratamiento farmacológico , Heridas y Lesiones/patología
10.
Nanomedicine ; 11(1): 195-206, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25240595

RESUMEN

Burn wounds are often complicated by bacterial infection, contributing to morbidity and mortality. Agents commonly used to treat burn wound infection are limited by toxicity, incomplete microbial coverage, inadequate penetration, and rising resistance. Curcumin is a naturally derived substance with innate antimicrobial and wound healing properties. Acting by multiple mechanisms, curcumin is less likely than current antibiotics to select for resistant bacteria. Curcumin's poor aqueous solubility and rapid degradation profile hinder usage; nanoparticle encapsulation overcomes this pitfall and enables extended topical delivery of curcumin. In this study, we synthesized and characterized curcumin nanoparticles (curc-np), which inhibited in vitro growth of methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa in dose-dependent fashion, and inhibited MRSA growth and enhanced wound healing in an in vivo murine wound model. Curc-np may represent a novel topical antimicrobial and wound healing adjuvant for infected burn wounds and other cutaneous injuries.


Asunto(s)
Antibacterianos/administración & dosificación , Infecciones Bacterianas/tratamiento farmacológico , Curcumina/química , Nanopartículas/química , Animales , Quemaduras/terapia , Movimiento Celular , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos , Queratinocitos/citología , Luz , Staphylococcus aureus Resistente a Meticilina , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Rastreo , Nanomedicina/métodos , Dispersión de Radiación , Solubilidad , Células Madre , Cicatrización de Heridas , Pez Cebra
11.
Cell Cycle ; 11(12): 2359-66, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22672901

RESUMEN

Fidgetin is a member of the AAA protein superfamily with important roles in mammalian development. Here we show that human Fidgetin is a potent microtubule severing and depolymerizing the enzyme used to regulate mitotic spindle architecture, dynamics and anaphase A. In vitro, recombinant human Fidgetin severs taxol-stabilized microtubules along their length and promotes depolymerization, primarily from their minus-ends. In cells, human Fidgetin targets to centrosomes, and its depletion with siRNA significantly reduces the velocity of poleward tubulin flux and anaphase A chromatid-to-pole motion. In addition, the loss of Fidgetin induces a microtubule-dependent enlargement of mitotic centrosomes and an increase in the number and length of astral microtubules. Based on these data, we propose that human Fidgetin actively suppresses microtubule growth from and attachment to centrosomes.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , ATPasas Asociadas con Actividades Celulares Diversas/antagonistas & inhibidores , ATPasas Asociadas con Actividades Celulares Diversas/genética , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/genética , Anafase , Línea Celular Tumoral , Centrosoma/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
12.
FASEB J ; 24(11): 4133-52, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20624931

RESUMEN

The skin forms a barrier against the environment and protects us from mechanical trauma, pathogens, radiation, dehydration, and dangerous temperature fluctuations. The epithelium of the skin, the epidermis, is in a continuous equilibrium of growth and differentiation and has the remarkable capacity to self-renew completely, which relies on reservoirs of stem cells. Epidermal homeostasis is further dependent on proper repair after injury, and on tight adhesion to the underlying basement membrane. Epidermal adhesion is mediated primarily by integrins, cell-surface receptors that connect the extracellular matrix to the cytoskeleton. In addition, numerous in vitro reports have implicated integrins, integrin-associated proteins, or downstream integrin effectors in the regulation of a plethora of cellular processes other than adhesion. Over the past decade, a wealth of information on the function of these proteins has been gathered both from (conditional) knockout mice and from human skin disorders, allowing for a reconstruction of integrin signaling pathways in vivo. Here, we address how epidermal integrins and integrin-associated proteins regulate keratinocyte adhesion, proliferation, and differentiation, as well as signal transduction, re-epithelialization during wound healing, hair growth, and stem cell maintenance. Furthermore, we discuss human pathologies associated with altered integrin functions in the epidermis.


Asunto(s)
Epidermis/inmunología , Integrinas/inmunología , Queratinocitos/inmunología , Animales , Humanos , Queratinocitos/citología , Queratinas Específicas del Pelo/inmunología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...