Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 36(11): 2865-2876, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32159962

RESUMEN

Coupling of photons with molecular emitters in different nanocavities have resulted in transformative plasmonic applications. The rapidly expanding field of surface plasmon-coupled emission (SPCE) has synergistically employed subwavelength optical properties of localized surface plasmon resonance (LSPR) supported by nanoparticles (NPs) and propagating surface plasmon polaritons assisted by metal thin films for diagnostic and point-of-care analysis. Gold nanoparticles (AuNPs) significantly quench the molecular emission from fluorescent molecules (at close distances <5 nm). More often, complex strategies are employed for providing a spacer layer around the AuNPs to avoid direct contact with fluorescent molecules, thereby preventing quenching. In this study we demonstrate a rapid and facile strategy with the use of Au-decorated SiO2 NPs (AuSil), a metal (Au)-dielectric (SiO2) hybrid material for dequenching the otherwise quenched fluorescence emission from radiating dipoles and to realize 88-fold enhancement using the SPCE platform. Different loading of AuNPs were studied to tailor fluorescence emission enhancements in spacer, cavity, and extended (ext.) cavity nanointerfaces. We also present femtomolar detection of spermidine using this nanohybrid in a highly desirable ext. cavity interface. This interface serves as an efficient coupling configuration with dual benefits of spacer and cavity architectures that has been widely explored hitherto. The multifold hot-spots rendered by the AuSil nanohybrids assist in augmented electromagnetic (EM)-field intensity that can be captured using a smartphone-based SPCE platform presenting excellent reliability and reproducibility in spermidine detection.

2.
Med Vet Entomol ; 30(3): 264-77, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27094337

RESUMEN

Dengue viruses are transmitted to humans through the bites of infected female aedine mosquitoes. Differences in the composition and structure of bacterial communities in the midguts of mosquitoes may affect the vector's ability to transmit the disease. To investigate and analyse the role of midgut bacterial communities in viral transmission, midgut bacteria from three species, namely Stegomyia aegypti (= Aedes aegypti), Fredwardsius vittatus (= Aedes vittatus) and Stegomyia albopicta (= Aedes albopictus) (all: Diptera: Culicidae), from dengue-endemic and non-endemic areas of Rajasthan, India were compared. Construction and analyses of six 16S rRNA gene libraries indicated that Serratia spp.-related phylotypes dominated all clone libraries of the three mosquito species from areas in which dengue is not endemic. In dengue-endemic areas, phylotypes related to Aeromonas, Enhydrobacter spp. and uncultivated bacterium dominated the clone libraries of S. aegypti, F. vittatus and S. albopicta, respectively. Diversity indices analysis and real-time TaqMan polymerase chain reaction assays showed bacterial diversity and abundance in the midguts of S. aegypti to be higher than in the other two species. Significant differences observed among midgut bacterial communities of the three mosquito species from areas in which dengue is and is not endemic, respectively, may be related to the vectorial capacity of mosquitoes to carry dengue viruses and, hence, to the prevalence of disease in some areas.


Asunto(s)
Aedes/microbiología , Bacterias/aislamiento & purificación , Dengue/epidemiología , Enfermedades Endémicas , Microbioma Gastrointestinal , Animales , Dengue/virología , Femenino , India/epidemiología , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA