Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2814: 119-131, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954202

RESUMEN

Largely due to its simplicity, while being more like human cells compared to other experimental models, Dictyostelium continues to be of great use to discover basic molecular mechanisms and signaling pathways underlying evolutionarily conserved biological processes. However, the identification of new protein interactions implicated in signaling pathways can be particularly challenging in Dictyostelium due to its extremely fast signaling kinetics coupled with the dynamic nature of signaling protein interactions. Recently, the proximity labeling method using engineered ascorbic acid peroxidase 2 (APEX2) in mammalian cells was shown to allow the detection of weak and/or transient protein interactions and also to obtain spatial and temporal resolution. Here, we describe a protocol for successfully using the APEX2-proximity labeling method in Dictyostelium. Coupled with the identification of the labeled proteins by mass spectrometry, this method expands Dictyostelium's proteomics toolbox and should be widely useful for identifying interacting partners involved in a variety of biological processes in Dictyostelium.


Asunto(s)
Ascorbato Peroxidasas , Dictyostelium , Proteómica , Dictyostelium/metabolismo , Ascorbato Peroxidasas/metabolismo , Ascorbato Peroxidasas/genética , Proteómica/métodos , Mapeo de Interacción de Proteínas/métodos , Espectrometría de Masas/métodos , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Humanos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Transducción de Señal , Coloración y Etiquetado/métodos , Endonucleasas , Enzimas Multifuncionales
2.
Methods Mol Biol ; 2814: 163-176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954205

RESUMEN

Ras and Rap small GTPases of the Ras superfamily act as molecular switches to control diverse cellular processes as part of different signaling pathways. Dictyostelium expresses several Ras and Rap proteins, and their study has and continues to greatly contribute to our understanding of their role in eukaryote biology. To study the activity of Ras and Rap proteins in Dictyostelium, several assays based on their interaction with the Ras binding domain of known eukaryotic Ras/Rap effectors have been developed and proved extremely useful to study their regulation and cellular roles. Here, we describe methods to assess Ras/Rap activity biochemically using a pull-down assay and through live-cell imaging using fluorescent reporters.


Asunto(s)
Dictyostelium , Proteínas ras , Dictyostelium/metabolismo , Dictyostelium/enzimología , Dictyostelium/genética , Proteínas ras/metabolismo , Proteínas de Unión al GTP rap/metabolismo , Proteínas de Unión al GTP rap/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Transducción de Señal , Unión Proteica
3.
J Biol Chem ; 300(7): 107423, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38815864

RESUMEN

Recent research has identified the mechanistic Target of Rapamycin Complex 2 (mTORC2) as a conserved direct effector of Ras proteins. While previous studies suggested the involvement of the Switch I (SWI) effector domain of Ras in binding mTORC2 components, the regulation of the Ras-mTORC2 pathway is not entirely understood. In Dictyostelium, mTORC2 is selectively activated by the Ras protein RasC, and the RasC-mTORC2 pathway then mediates chemotaxis to cAMP and cellular aggregation by regulating the actin cytoskeleton and promoting cAMP signal relay. Here, we investigated the role of specific residues in RasC's SWI, C-terminal allosteric domain, and hypervariable region (HVR) related to mTORC2 activation. Interestingly, our results suggest that RasC SWI residue A31, which was previously implicated in RasC-mediated aggregation, regulates RasC's specific activation by the Aimless RasGEF. On the other hand, our investigation identified a crucial role for RasC SWI residue T36, with secondary contributions from E38 and allosteric domain residues. Finally, we found that conserved basic residues and the adjacent prenylation site in the HVR, which are crucial for RasC's membrane localization, are essential for RasC-mTORC2 pathway activation by allowing for both RasC's own cAMP-induced activation and its subsequent activation of mTORC2. Therefore, our findings revealed new determinants of RasC-mTORC2 pathway specificity in Dictyostelium, contributing to a deeper understanding of Ras signaling regulation in eukaryotic cells.

4.
Neoplasia ; 53: 101003, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38759377

RESUMEN

Dynamic changes in the endoplasmic reticulum (ER) morphology are central to maintaining cellular homeostasis. Microtubules (MT) facilitate the continuous remodeling of the ER network into sheets and tubules by coordinating with many ER-shaping protein complexes, although how this process is controlled by extracellular signals remains unknown. Here we report that TAK1, a kinase responsive to various growth factors and cytokines including TGF-ß and TNF-α, triggers ER tubulation by activating αTAT1, an MT-acetylating enzyme that enhances ER-sliding. We show that this TAK1/αTAT1-dependent ER remodeling promotes cell survival by actively downregulating BOK, an ER membrane-associated proapoptotic effector. While BOK is normally protected from degradation when complexed with IP3R, it is rapidly degraded upon their dissociation during the ER sheets-to-tubules conversion. These findings demonstrate a distinct mechanism of ligand-induced ER remodeling and suggest that the TAK1/αTAT1 pathway may be a key target in ER stress and dysfunction.


Asunto(s)
Retículo Endoplásmico , Quinasas Quinasa Quinasa PAM , Microtúbulos , Transducción de Señal , Microtúbulos/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Acetilación , Animales , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Acetiltransferasas/metabolismo , Acetiltransferasas/genética , Estrés del Retículo Endoplásmico , Ratones , Proteínas de Microtúbulos
5.
Mol Biol Cell ; 34(13): ar128, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37729017

RESUMEN

Although the RAS oncogene has been extensively studied, new aspects concerning its role and regulation in normal biology and cancer continue to be discovered. Recently, others and we have shown that the mechanistic Target of Rapamycin Complex 2 (mTORC2) is a Ras effector in Dictyostelium and mammalian cells. mTORC2 plays evolutionarily conserved roles in cell survival and migration and has been linked to tumorigenesis. Because RAS is often mutated in lung cancer, we investigated whether a Ras-mTORC2 pathway contributes to enhancing the migration of lung cancer cells expressing oncogenic Ras. We used A549 cells and CRISPR/Cas9 to revert the cells' KRAS G12S mutation to wild-type and establish A549 revertant (REV) cell lines, which we then used to evaluate the Ras-mediated regulation of mTORC2 and cell migration. Interestingly, our results suggest that K-Ras and mTORC2 promote A549 cell migration but as part of different pathways and independently of Ras's mutational status. Moreover, further characterization of the A549REV cells revealed that loss of mutant K-Ras expression for the wild-type protein leads to an increase in cell growth and proliferation, suggesting that the A549 cells have low KRAS-mutant dependency and that recovering expression of wild-type K-Ras protein increases these cells tumorigenic potential.


Asunto(s)
Dictyostelium , Neoplasias Pulmonares , Animales , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Genes ras , Células A549 , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Dictyostelium/metabolismo , Proliferación Celular , Mutación/genética , Línea Celular Tumoral , Mamíferos/metabolismo
6.
J Biol Methods ; 10: e99010002, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007980

RESUMEN

To fully understand any cellular process, we not only need to identify the proteins implicated, but also how the protein network is structurally and spatially organized and changes over time. However, the dynamic nature of many protein interactions involved in cellular signaling pathways continues to be the bottleneck in mapping and studying protein networks. Fortunately, a recently developed proximity labeling method using engineered ascorbic acid peroxidase 2 (APEX2) in mammalian cells allows the identification of weak and/or transient protein interactions with spatial and temporal resolution. Here, we describe a protocol for successfully using the APEX2-proximity labeling method in Dictyostelium, using the cAMP receptor cAR1 as example. Coupled to the identification of the labeled proteins by mass spectrometry, this method expands Dictyostelium's proteomics toolbox and should be widely useful for identifying interacting partners involved in a variety of biological processes in Dictyostelium.

7.
Mol Biol Cell ; 34(2): ar9, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36542482

RESUMEN

We previously identified the mechanistic target of rapamycin complex 2 (mTORC2) as an effector of Ras for the control of directed cell migration in Dictyostelium. Recently, the Ras-mediated regulation of mTORC2 was found to be conserved in mammalian cells, and mTORC2 was shown to be an effector of oncogenic Ras. Interestingly, mTORC2 has been linked to cancer cell migration, and particularly in breast cancer. Here, we investigated the role of Ras in promoting the migration and invasion of breast cancer cells through mTORC2. We observed that both Ras and mTORC2 promote the migration of different breast cancer cells and breast cancer cell models. Using HER2 and oncogenic Ras-transformed breast epithelial MCF10A cells, we found that both wild-type Ras and oncogenic Ras promote mTORC2 activation and an mTORC2-dependent migration and invasion in these breast cancer models. We further observed that, whereas oncogenic Ras-transformed MCF10A cells display uncontrolled cell proliferation and invasion, disruption of mTORC2 leads to loss of invasiveness only. Together, our findings suggest that, whereas the Ras-mediated activation of mTORC2 is expected to play a minor role in breast tumor formation, the Ras-mTORC2 pathway plays an important role in promoting the migration and invasion of breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Dictyostelium , Animales , Femenino , Humanos , Neoplasias de la Mama/patología , Movimiento Celular/fisiología , Dictyostelium/metabolismo , Células Epiteliales/metabolismo , Mamíferos/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Sirolimus , Proteínas ras/metabolismo
8.
J Cell Sci ; 133(19)2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33033115

RESUMEN

The Ras oncogene is notoriously difficult to target with specific therapeutics. Consequently, there is interest to better understand the Ras signaling pathways to identify potential targetable effectors. Recently, the mechanistic target of rapamycin complex 2 (mTORC2) was identified as an evolutionarily conserved Ras effector. mTORC2 regulates essential cellular processes, including metabolism, survival, growth, proliferation and migration. Moreover, increasing evidence implicate mTORC2 in oncogenesis. Little is known about the regulation of mTORC2 activity, but proposed mechanisms include a role for phosphatidylinositol (3,4,5)-trisphosphate - which is produced by class I phosphatidylinositol 3-kinases (PI3Ks), well-characterized Ras effectors. Therefore, the relationship between Ras, PI3K and mTORC2, in both normal physiology and cancer is unclear; moreover, seemingly conflicting observations have been reported. Here, we review the evidence on potential links between Ras, PI3K and mTORC2. Interestingly, data suggest that Ras and PI3K are both direct regulators of mTORC2 but that they act on distinct pools of mTORC2: Ras activates mTORC2 at the plasma membrane, whereas PI3K activates mTORC2 at intracellular compartments. Consequently, we propose a model to explain how Ras and PI3K can differentially regulate mTORC2, and highlight the diversity in the mechanisms of mTORC2 regulation, which appear to be determined by the stimulus, cell type, and the molecularly and spatially distinct mTORC2 pools.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I , Genes ras , Fosfatidilinositol 3-Quinasas , Animales , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
9.
Mol Cell Biochem ; 457(1-2): 157-168, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30879206

RESUMEN

Caffeine is commonly used in Dictyostelium to inhibit the synthesis of the chemoattractant cAMP and, therefore, its secretion and the autocrine stimulation of cells, in order to prevent its interference with the study of chemoattractant-induced responses. However, the mechanism through which caffeine inhibits cAMP synthesis in Dictyostelium has not been characterized. Here, we report the effects of caffeine on the cAMP chemoattractant signaling network. We found that caffeine inhibits phosphatidylinositol 3-kinase (PI3K) and mechanistic target of rapamycin complex 2 (mTORC2). Both PI3K and mTORC2 are essential for the chemoattractant-stimulated cAMP production, thereby providing a mechanism for the caffeine-mediated inhibition of cAMP synthesis. Our results also reveal that caffeine treatment of cells leads to an increase in cAMP-induced RasG and Rap1 activation, and inhibition of the PKA, cGMP, MyoII, and ERK1 responses. Finally, we observed that caffeine has opposite effects on F-actin and ERK2 depending on the assay and Dictyostelium strain used, respectively. Altogether, our findings reveal that caffeine considerably affects the cAMP-induced chemotactic signaling pathways in Dictyostelium, most likely acting through multiple targets that include PI3K and mTORC2.


Asunto(s)
Cafeína/farmacología , Quimiotaxis/efectos de los fármacos , AMP Cíclico/metabolismo , Dictyostelium/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Protozoarias/metabolismo , Sistemas de Mensajero Secundario/efectos de los fármacos
10.
Cell Signal ; 48: 25-37, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29698704

RESUMEN

To study the dynamics and mechanisms controlling activation of the heterotrimeric G protein Gα2ßγ in Dictyostelium in response to stimulation by the chemoattractant cyclic AMP (cAMP), we monitored the G protein subunit interaction in live cells using bioluminescence resonance energy transfer (BRET). We found that cAMP induces the cAR1-mediated dissociation of the G protein subunits to a similar extent in both undifferentiated and differentiated cells, suggesting that only a small number of cAR1 (as expressed in undifferentiated cells) is necessary to induce the full activation of Gα2ßγ. In addition, we found that treating cells with caffeine increases the potency of cAMP-induced Gα2ßγ activation; and that disrupting the microtubule network but not F-actin inhibits the cAMP-induced dissociation of Gα2ßγ. Thus, microtubules are necessary for efficient cAR1-mediated activation of the heterotrimeric G protein. Finally, kinetics analyses of Gα2ßγ subunit dissociation induced by different cAMP concentrations indicate that there are two distinct rates at which the heterotrimeric G protein subunits dissociate when cells are stimulated with cAMP concentrations above 500 nM versus only one rate at lower cAMP concentrations. Quantitative modeling suggests that the kinetics profile of Gα2ßγ subunit dissociation results from the presence of both uncoupled and G protein pre-coupled cAR1 that have differential affinities for cAMP and, consequently, induce G protein subunit dissociation through different rates. We suggest that these different signaling kinetic profiles may play an important role in initial chemoattractant gradient sensing.


Asunto(s)
Cafeína/farmacología , Factores Quimiotácticos/farmacología , AMP Cíclico/metabolismo , Dictyostelium/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Microtúbulos/metabolismo , Transferencia de Energía por Resonancia de Bioluminiscencia , Quimiotaxis/fisiología , Transducción de Señal
11.
J Cell Sci ; 130(9): 1545-1558, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28302905

RESUMEN

Efficient directed migration requires tight regulation of chemoattractant signal transduction pathways in both space and time, but the mechanisms involved in such regulation are not well understood. Here, we investigated the role of protein kinase A (PKA) in controlling signaling of the chemoattractant cAMP in Dictyostelium discoideum We found that cells lacking PKA display severe chemotaxis defects, including impaired directional sensing. Although PKA is an important regulator of developmental gene expression, including the cAMP receptor cAR1, our studies using exogenously expressed cAR1 in cells lacking PKA, cells lacking adenylyl cyclase A (ACA) and cells treated with the PKA-selective pharmacological inhibitor H89, suggest that PKA controls chemoattractant signal transduction, in part, through the regulation of RasG, Rap1 and TORC2. As these pathways control the ACA-mediated production of intracellular cAMP, they lie upstream of PKA in this chemoattractant signaling network. Consequently, we propose that the PKA-mediated regulation of the upstream RasG, Rap1 and TORC2 signaling pathways is part of a negative feedback mechanism controlling chemoattractant signal transduction during Dictyostelium chemotaxis.


Asunto(s)
Factores Quimiotácticos/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dictyostelium/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas Protozoarias/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rap1/metabolismo , Proteínas ras/metabolismo , Actinas/metabolismo , Quimiotaxis , Dictyostelium/citología , Dictyostelium/efectos de los fármacos , Modelos Biológicos , Miosinas/metabolismo , Fenotipo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
12.
Methods Mol Biol ; 1407: 63-77, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27271894

RESUMEN

Understanding the dynamics of chemoattractant signaling is key to our understanding of the mechanisms underlying the directed migration of cells, including that of neutrophils to sites of infections and of cancer cells during metastasis. A model frequently used for deciphering chemoattractant signal transduction is the social amoeba Dictyostelium discoideum. However, the methods available to quantitatively measure chemotactic signaling are limited. Here, we describe a protocol to quantitatively study chemoattractant signal transduction in Dictyostelium by monitoring protein-protein interactions and conformational changes using Bioluminescence Resonance Energy Transfer (BRET).


Asunto(s)
Transferencia de Energía por Resonancia de Bioluminiscencia , Factores Quimiotácticos , Quimiotaxis , Dictyostelium/fisiología , Transducción de Señal , Movimiento Celular , AMP Cíclico/metabolismo , Genes Reporteros , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusión , Reproducibilidad de los Resultados , Transformación Genética
13.
Sci Rep ; 6: 25823, 2016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27172998

RESUMEN

Target of Rapamycin Complex 2 (TORC2) has conserved roles in regulating cytoskeleton dynamics and cell migration and has been linked to cancer metastasis. However, little is known about the mechanisms regulating TORC2 activity and function in any system. In Dictyostelium, TORC2 functions at the front of migrating cells downstream of the Ras protein RasC, controlling F-actin dynamics and cAMP production. Here, we report the identification of the small GTPase Rap1 as a conserved binding partner of the TORC2 component RIP3/SIN1, and that Rap1 positively regulates the RasC-mediated activation of TORC2 in Dictyostelium. Moreover, we show that active RasC binds to the catalytic domain of TOR, suggesting a mechanism of TORC2 activation that is similar to Rheb activation of TOR complex 1. Dual Ras/Rap1 regulation of TORC2 may allow for integration of Ras and Rap1 signaling pathways in directed cell migration.


Asunto(s)
Dictyostelium/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Proteínas ras/metabolismo , Secuencia Conservada , Modelos Biológicos , Fosforilación , Unión Proteica , Proteínas Protozoarias/metabolismo
14.
J Biol Chem ; 289(7): 3950-9, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24338482

RESUMEN

Mammalian cells encode three closely related Ras proteins, H-Ras, N-Ras, and K-Ras. Oncogenic K-Ras mutations frequently occur in human cancers, which lead to dysregulated cell proliferation and genomic instability. However, mechanistic role of the Ras isoform regulation have remained largely unknown. Furthermore, the dynamics and function of negative regulation of GTP-loaded K-Ras have not been fully investigated. Here, we demonstrate RasG, the Dictyostelium orthologue of K-Ras, is targeted for degradation by polyubiquitination. Both ubiquitination and degradation of RasG were strictly associated with RasG activity. High resolution tandem mass spectrometry (LC-MS/MS) analysis indicated that RasG ubiquitination occurs at C-terminal lysines equivalent to lysines found in human K-Ras but not in H-Ras and N-Ras homologues. Substitution of these lysine residues with arginines (4KR-RasG) diminished RasG ubiquitination and increased RasG protein stability. Cells expressing 4KR-RasG failed to undergo proper cytokinesis and resulted in multinucleated cells. Ectopically expressed human K-Ras undergoes polyubiquitin-mediated degradation in Dictyostelium, whereas human H-Ras and a Dictyostelium H-Ras homologue (RasC) are refractory to ubiquitination. Our results indicate the existence of GTP-loaded K-Ras orthologue-specific degradation system in Dictyostelium, and further identification of the responsible E3-ligase may provide a novel therapeutic approach against K-Ras-mutated cancers.


Asunto(s)
Citocinesis/fisiología , Dictyostelium/enzimología , Proteolisis , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Protozoarias/metabolismo , Ubiquitinación/fisiología , Proteínas ras/metabolismo , Dictyostelium/genética , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Estabilidad Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Protozoarias/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas ras/genética
15.
Mol Biol Cell ; 24(2): 100-14, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23135995

RESUMEN

How independent signaling pathways are integrated to holistically control a biological process is not well understood. We have identified Daydreamer (DydA), a new member of the Mig10/RIAM/lamellipodin (MRL) family of adaptor proteins that localizes to the leading edge of the cell. DydA is a putative Ras effector that is required for cell polarization and directional movement during chemotaxis. dydA(-) cells exhibit elevated F-actin and assembled myosin II (MyoII), increased and extended phosphoinositide-3-kinase (PI3K) activity, and extended phosphorylation of the activation loop of PKB and PKBR1, suggesting that DydA is involved in the negative regulation of these pathways. DydA is phosphorylated by glycogen synthase kinase-3 (GSK-3), which is required for some, but not all, of DydA's functions, including the proper regulation of PKB and PKBR1 and MyoII assembly. gskA(-) cells exhibit very strong chemotactic phenotypes, as previously described, but exhibit an increased rate of random motility. gskA(-) cells have a reduced MyoII response and a reduced level of phosphatidylinositol (3,4,5)-triphosphate production, but a highly extended recruitment of PI3K to the plasma membrane and highly extended kinetics of PKB and PKBR1 activation. Our results demonstrate that GSK-3 function is essential for chemotaxis, regulating multiple substrates, and that one of these effectors, DydA, plays a key function in the dynamic regulation of chemotaxis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Dictyostelium/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Polaridad Celular , Quimiotaxis , Secuencia de Consenso , Dictyostelium/citología , Técnicas de Inactivación de Genes , Cinética , Datos de Secuencia Molecular , Fosforilación , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Protozoarias/genética , Transducción de Señal , Proteínas de Unión al GTP rap1/metabolismo , Proteínas ras/metabolismo
16.
Sci Signal ; 5(205): ra2, 2012 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-22215733

RESUMEN

Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a eukaryotic chemotaxis pathway immediately downstream from G protein-coupled receptors. The response of an activated Ras showed near-perfect adaptation, leading us to attempt to fit the results using mathematical models for the two possible simple network topologies that can provide perfect adaptation. Only the incoherent feedforward network accurately described the experimental results. This analysis revealed that adaptation in this Ras pathway is achieved through the proportional activation of upstream components and not through negative feedback loops. Furthermore, these results are consistent with a local excitation, global inhibition mechanism for gradient sensing, possibly with a Ras guanosine triphosphatase-activating protein acting as a global inhibitor.


Asunto(s)
Adaptación Fisiológica/fisiología , Quimiotaxis/fisiología , Dictyostelium/fisiología , Retroalimentación Fisiológica/fisiología , Modelos Biológicos , Receptores Acoplados a Proteínas G/metabolismo , Proteínas ras/metabolismo , Factores Quimiotácticos/metabolismo , AMP Cíclico/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente
17.
PLoS Comput Biol ; 7(6): e1002044, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21738453

RESUMEN

Many eukaryotic cells are able to crawl on surfaces and guide their motility based on environmental cues. These cues are interpreted by signaling systems which couple to cell mechanics; indeed membrane protrusions in crawling cells are often accompanied by activated membrane patches, which are localized areas of increased concentration of one or more signaling components. To determine how these patches are related to cell motion, we examine the spatial localization of RasGTP in chemotaxing Dictyostelium discoideum cells under conditions where the vertical extent of the cell was restricted. Quantitative analyses of the data reveal a high degree of spatial correlation between patches of activated Ras and membrane protrusions. Based on these findings, we formulate a model for amoeboid cell motion that consists of two coupled modules. The first module utilizes a recently developed two-component reaction diffusion model that generates transient and localized areas of elevated concentration of one of the components along the membrane. The activated patches determine the location of membrane protrusions (and overall cell motion) that are computed in the second module, which also takes into account the cortical tension and the availability of protrusion resources. We show that our model is able to produce realistic amoeboid-like motion and that our numerical results are consistent with experimentally observed pseudopod dynamics. Specifically, we show that the commonly observed splitting of pseudopods can result directly from the dynamics of the signaling patches.


Asunto(s)
Movimiento Celular/fisiología , Quimiotaxis/fisiología , Modelos Biológicos , Seudópodos/fisiología , Simulación por Computador , Dictyostelium/citología , Dictyostelium/fisiología , Guanosina Trifosfato , Técnicas Analíticas Microfluídicas , Transducción de Señal , Análisis de la Célula Individual , Proteínas ras
18.
Dev Cell ; 19(6): 795-6, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21145496

RESUMEN

During cell migration, chemoattractant-induced signaling pathways determine the direction of movement by controlling the spatiotemporal dynamics of cytoskeletal components. In this issue of Developmental Cell, Liu et al. report that the target of rapamycin complex 2 (TORC2) controls cell polarity and chemotaxis through regulation of both F-actin and myosin II in migrating neutrophils.

19.
Dev Cell ; 18(5): 737-49, 2010 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-20493808

RESUMEN

Ras was found to regulate Dictyostelium chemotaxis, but the mechanisms that spatially and temporally control Ras activity during chemotaxis remain largely unknown. We report the discovery of a Ras signaling complex that includes the Ras guanine exchange factor (RasGEF) Aimless, RasGEFH, protein phosphatase 2A (PP2A), and a scaffold designated Sca1. The Sca1/RasGEF/PP2A complex is recruited to the plasma membrane in a chemoattractant- and F-actin-dependent manner and is enriched at the leading edge of chemotaxing cells where it regulates F-actin dynamics and signal relay by controlling the activation of RasC and the downstream target of rapamycin complex 2 (TORC2)-Akt/protein kinase B (PKB) pathway. In addition, PKB and PKB-related PKBR1 phosphorylate Sca1 and regulate the membrane localization of the Sca1/RasGEF/PP2A complex, and thereby RasC activity, in a negative feedback fashion. Thus, our study uncovered a molecular mechanism whereby RasC activity and the spatiotemporal activation of TORC2 are tightly controlled at the leading edge of chemotaxing cells.


Asunto(s)
Movimiento Celular/fisiología , Quimiotaxis/fisiología , Neutrófilos/fisiología , Factores de Transcripción/fisiología , Proteínas ras/fisiología , Animales , Agregación Celular/fisiología , Membrana Celular/fisiología , AMP Cíclico/fisiología , Dictyostelium/fisiología , Eliminación de Gen , Humanos , Neutrófilos/citología , Fosforilación , Proteínas Proto-Oncogénicas p21(ras)/fisiología , Proteínas Protozoarias/fisiología , Factores de Transcripción/genética , Factores de Intercambio de Guanina Nucleótido ras/fisiología , Proteínas ras/genética
20.
Curr Biol ; 18(20): 1587-1593, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-18948008

RESUMEN

Cells' ability to detect and orient themselves in chemoattractant gradients has been the subject of numerous studies, but the underlying molecular mechanisms remain largely unknown [1]. Ras activation is the earliest polarized response to chemoattractant gradients downstream from heterotrimeric G proteins in Dictyostelium, and inhibition of Ras signaling results in directional migration defects [2]. Activated Ras is enriched at the leading edge, promoting the localized activation of key chemotactic effectors, such as PI3K and TORC2 [2-5]. To investigate the role of Ras in directional sensing, we studied the effect of its misregulation by using cells with disrupted RasGAP activity. We identified an ortholog of mammalian NF1, DdNF1, as a major regulator of Ras activity in Dictyostelium. We show that disruption of nfaA leads to spatially and temporally unregulated Ras activity, causing cytokinesis and chemotaxis defects. By using unpolarized, latrunculin-treated cells, we show that tight regulation of Ras is important for gradient sensing. Together, our findings suggest that Ras is part of the cell's compass and that the RasGAP-mediated regulation of Ras activity affects directional sensing.


Asunto(s)
Quimiotaxis/fisiología , Dictyostelium/fisiología , Neurofibromina 1/metabolismo , Proteínas ras/metabolismo , Animales , Factores Quimiotácticos/farmacología , Quimiotaxis/efectos de los fármacos , Dictyostelium/efectos de los fármacos , Dictyostelium/genética , Regulación de la Expresión Génica , Genes Protozoarios , Genes ras , Neurofibromina 1/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas ras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...