Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
G3 (Bethesda) ; 14(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-37875105

RESUMEN

The slender anole, Anolis apletophallus, is a small arboreal lizard of the rainforest understory of central and eastern Panama. This species has been the subject of numerous ecological and evolutionary studies over the past 60 years as a result of attributes that make it especially amenable to field and laboratory science. Slender anoles are highly abundant, short-lived (nearly 100% annual turnover), easy to manipulate in both the lab and field, and are ubiquitous in the forests surrounding the Smithsonian Tropical Research Institute in Panama, where researchers have access to high-quality laboratory facilities. Here, we present a high-quality genome for the slender anole, which is an important new resource for studying this model species. We assembled and annotated the slender anole genome by combining 3 technologies: Oxford Nanopore, 10× Genomics Linked-Reads, and Dovetail Omni-C. We compared this genome with the recently published brown anole (Anolis sagrei) and the canonical green anole (Anolis carolinensis) genomes. Our genome is the first assembled for an Anolis lizard from mainland Central or South America, the regions that host the majority of diversity in the genus. This new reference genome is one of the most complete genomes of any anole assembled to date and should facilitate deeper studies of slender anole evolution, as well as broader scale comparative genomic studies of both mainland and island species. In turn, such studies will further our understanding of the well-known adaptive radiation of Anolis lizards.


Asunto(s)
Genoma , Lagartos , Animales , Genómica , Lagartos/genética , Árboles/genética
2.
J Exp Biol ; 224(Pt 2)2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33328289

RESUMEN

If fitness optima for a given trait differ between males and females in a population, sexual dimorphism may evolve. Sex-biased trait variation may affect patterns of habitat use, and if the microhabitats used by each sex have dissimilar microclimates, this can drive sex-specific selection on thermal physiology. Nevertheless, tests of differences between the sexes in thermal physiology are uncommon, and studies linking these differences to microhabitat use or behavior are even rarer. We examined microhabitat use and thermal physiology in two ectothermic congeners that are ecologically similar but differ in their degree of sexual size dimorphism. Brown anoles (Anolis sagrei) exhibit male-biased sexual size dimorphism and live in thermally heterogeneous habitats, whereas slender anoles (Anolis apletophallus) are sexually monomorphic in body size and live in thermally homogeneous habitats. We hypothesized that differences in habitat use between the sexes would drive sexual divergence in thermal physiology in brown anoles, but not slender anoles, because male and female brown anoles may be exposed to divergent microclimates. We found that male and female brown anoles, but not slender anoles, used perches with different thermal characteristics and were sexually dimorphic in thermal tolerance traits. However, field-active body temperatures and behavior in a laboratory thermal arena did not differ between females and males in either species. Our results suggest that sexual dimorphism in thermal physiology can arise from phenotypic plasticity or sex-specific selection on traits that are linked to thermal tolerance, rather than from direct effects of thermal environments experienced by males and females.


Asunto(s)
Lagartos , Adaptación Fisiológica , Animales , Tamaño Corporal , Ecosistema , Femenino , Masculino , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA