Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Physiol Meas ; 45(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38478997

RESUMEN

Objective.Photoplethysmography is a non-invasive optical technique that measures changes in blood volume within tissues. It is commonly and being increasingly used for a variety of research and clinical applications to assess vascular dynamics and physiological parameters. Yet, contrary to heart rate variability measures, a field which has seen the development of stable standards and advanced toolboxes and software, no such standards and limited open tools exist for continuous photoplethysmogram (PPG) analysis. Consequently, the primary objective of this research was to identify, standardize, implement and validate key digital PPG biomarkers.Approach.This work describes the creation of a standard Python toolbox, denotedpyPPG, for long-term continuous PPG time-series analysis and demonstrates the detection and computation of a high number of fiducial points and digital biomarkers using a standard fingerbased transmission pulse oximeter.Main results.The improved PPG peak detector had an F1-score of 88.19% for the state-of-the-art benchmark when evaluated on 2054 adult polysomnography recordings totaling over 91 million reference beats. The algorithm outperformed the open-source original Matlab implementation by ∼5% when benchmarked on a subset of 100 randomly selected MESA recordings. More than 3000 fiducial points were manually annotated by two annotators in order to validate the fiducial points detector. The detector consistently demonstrated high performance, with a mean absolute error of less than 10 ms for all fiducial points.Significance.Based on these fiducial points,pyPPGengineered a set of 74 PPG biomarkers. Studying PPG time-series variability usingpyPPGcan enhance our understanding of the manifestations and etiology of diseases. This toolbox can also be used for biomarker engineering in training data-driven models.pyPPGis available onhttps://physiozoo.com/.


Asunto(s)
Fotopletismografía , Procesamiento de Señales Asistido por Computador , Frecuencia Cardíaca/fisiología , Fotopletismografía/métodos , Polisomnografía , Algoritmos , Biomarcadores
2.
Front Physiol ; 15: 1228439, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468704

RESUMEN

Many methods have been proposed to detect beats in photoplethysmogram (PPG) signals. We present a novel method which uses the Symmetric Projection Attractor Reconstruction (SPAR) method to generate an attractor in a two dimensional phase space from the PPG signal. We can then define a line through the origin of this phase space to be a Poincaré section, as is commonly used in dynamical systems. Beats are detected when the attractor trajectory crosses the Poincaré section. By considering baseline drift, we define an optimal Poincaré section to use. The performance of this method was assessed using the WESAD dataset, achieving median F 1 scores of 74.3% in the Baseline phase, 63.0% during Stress, 93.6% during Amusement, and 97.7% during Meditation. Performance was better than an earlier version of the method, and comparable to one of the best algorithms identified in a recent benchmarking study of 15 beat detection algorithms. In addition, our method performed better than two others in the accuracy of the inter-beat intervals for two resting subjects.

3.
JRSM Cardiovasc Dis ; 13: 20480040231225384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38314325

RESUMEN

Introduction: Photoplethysmogram signals from wearable devices typically measure heart rate and blood oxygen saturation, but contain a wealth of additional information about the cardiovascular system. In this study, we compared two signal-processing techniques: fiducial point analysis and Symmetric Projection Attractor Reconstruction, on their ability to extract new cardiovascular information from a photoplethysmogram signal. The aim was to identify fiducial point analysis and Symmetric Projection Attractor Reconstruction indices that could classify photoplethysmogram signals, according to age, sex and physical activity. Methods: Three datasets were used: an in-silico dataset of simulated photoplethysmogram waves for healthy male participants (25-75 years old); an in-vivo dataset containing 10-min photoplethysmogram recordings from 57 healthy subjects at rest (18-39 or > 70 years old; 53% female); and an in-vivo dataset containing photoplethysmogram recordings collected for 4 weeks from a single subject, in daily life. The best-performing indices from the in-silico study (5/48 fiducial point analysis and 6/49 Symmetric Projection Attractor Reconstruction) were applied to the in-vivo datasets. Results: Key fiducial point analysis and Symmetric Projection Attractor Reconstruction indices, which showed the greatest differences between groups, were found to be consistent across datasets. These indices were related to systolic augmentation, diastolic peak positioning and prominence, and waveform variability. Both fiducial point analysis and Symmetric Projection Attractor Reconstruction techniques provided indices that supported the classification of age and physical activity, but not sex. Conclusions: Both fiducial point analysis and Symmetric Projection Attractor Reconstruction techniques demonstrated utility in identifying cardiovascular differences between individuals and within an individual over time. Future research should investigate the potential utility of these techniques for extracting information on fitness and disease, to support healthcare-decision making.

4.
Front Physiol ; 14: 1176753, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954447

RESUMEN

Photopletysmography (PPG) is a non-invasive and well known technology that enables the recording of the digital volume pulse (DVP). Although PPG is largely employed in research, several aspects remain unknown. One of these is represented by the lack of information about how many waveform classes best express the variability in shape. In the literature, it is common to classify DVPs into four classes based on the dicrotic notch position. However, when working with real data, labelling waveforms with one of these four classes is no longer straightforward and may be challenging. The correct identification of the DVP shape could enhance the precision and the reliability of the extracted bio markers. In this work we proposed unsupervised machine learning and deep learning approaches to overcome the data labelling limitations. Concretely we performed a K-medoids based clustering that takes as input 1) DVP handcrafted features, 2) similarity matrix computed with the Derivative Dynamic Time Warping and 3) DVP features extracted from a CNN AutoEncoder. All the cited methods have been tested first by imposing four medoids representative of the Dawber classes, and after by automatically searching four clusters. We then searched the optimal number of clusters for each method using silhouette score, the prediction strength and inertia. To validate the proposed approaches we analyse the dissimilarities in the clinical data related to obtained clusters.

5.
Am J Physiol Heart Circ Physiol ; 325(6): H1290-H1303, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37737734

RESUMEN

Vascular aging (VA) involves structural and functional changes in blood vessels that contribute to cardiovascular disease. Several noninvasive pulse wave (PW) indices have been proposed to assess the arterial stiffness component of VA in the clinic and daily life. This study investigated 19 of these indices, identified in recent review articles on VA, by using a database comprising 3,837 virtual healthy subjects aged 25-75 yr, each with unique PW signals simulated under various levels of artificial noise to mimic real measurement errors. For each subject, VA indices were calculated from filtered PW signals and compared with the precise theoretical value of aortic Young's modulus (EAo). In silico PW indices showed age-related changes that align with in vivo population studies. The cardio-ankle vascular index (CAVI) and all pulse wave velocity (PWV) indices showed strong linear correlations with EAo (Pearson's rp > 0.95). Carotid distensibility showed a strong negative nonlinear correlation (Spearman's rs < -0.99). CAVI and distensibility exhibited greater resilience to noise compared with PWV indices. Blood pressure-related indices and photoplethysmography (PPG)-based indices showed weaker correlations with EAo (rp and rs < 0.89, |rp| and |rs| < 0.84, respectively). Overall, blood pressure-related indices were confounded by more cardiovascular properties (heart rate, stroke volume, duration of systole, large artery diameter, and/or peripheral vascular resistance) compared with other studied indices, and PPG-based indices were most affected by noise. In conclusion, carotid-femoral PWV, CAVI and carotid distensibility emerged as the superior clinical VA indicators, with a strong EAo correlation and noise resilience. PPG-based indices showed potential for daily VA monitoring under minimized noise disturbances.NEW & NOTEWORTHY For the first time, 19 noninvasive pulse wave indices for assessing vascular aging were examined together in a single database of nearly 4,000 subjects aged 25-75 yr. The dataset contained precise values of the aortic Young's modulus and other hemodynamic measures for each subject, which enabled us to test each index's ability to measure changes in aortic stiffness while accounting for confounding factors and measurement errors. The study provides freely available tools for analyzing these and additional indices.


Asunto(s)
Análisis de la Onda del Pulso , Rigidez Vascular , Humanos , Envejecimiento/fisiología , Hemodinámica , Aorta , Arterias Carótidas , Rigidez Vascular/fisiología
6.
ArXiv ; 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37502630

RESUMEN

Efficient and accurate evaluation of long-term photoplethysmography (PPG) recordings is essential for both clinical assessments and consumer products. In 2021, the top opensource peak detectors were benchmarked on the Multi-Ethnic Study of Atherosclerosis (MESA) database consisting of polysomnography (PSG) recordings and continuous sleep PPG data, where the Automatic Beat Detector (Aboy) had the best accuracy. This work presents Aboy++, an improved version of the original Aboy beat detector. The algorithm was evaluated on 100 adult PPG recordings from the MESA database, which contains more than 4.25 million reference beats. Aboy++ achieved an F1-score of 85.5%, compared to 80.99% for the original Aboy peak detector. On average, Aboy++ processed a 1 hour-long recording in less than 2 seconds. This is compared to 115 seconds (i.e., over 57-times longer) for the open-source implementation of the original Aboy peak detector. This study demonstrated the importance of developing robust algorithms like Aboy++ to improve PPG data analysis and clinical outcomes. Overall, Aboy++ is a reliable tool for evaluating long-term wearable PPG measurements in clinical and consumer contexts. The open-source algorithm is available on the physiozoo.com website (on publication of this proceeding).

7.
Physiol Meas ; 44(11)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37494945

RESUMEN

Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology.


Asunto(s)
Fotopletismografía , Dispositivos Electrónicos Vestibles , Monitores de Ejercicio , Procesamiento de Señales Asistido por Computador , Frecuencia Cardíaca/fisiología
8.
Physiol Meas ; 44(5)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37172609

RESUMEN

Objective. Pulse oximetry is a non-invasive optical technique used to measure arterial oxygen saturation (SpO2) in a variety of clinical settings and scenarios. Despite being one the most significant technological advances in health monitoring over the last few decades, there have been reports on its various limitations. Recently due to the Covid-19 pandemic, questions about pulse oximeter technology and its accuracy when used in people with different skin pigmentation have resurfaced, and are to be addressed.Approach. This review presents an introduction to the technique of pulse oximetry including its basic principle of operation, technology, and limitations, with a more in depth focus on skin pigmentation. Relevant literature relating to the performance and accuracy of pulse oximeters in populations with different skin pigmentation are evaluated.Main Results. The majority of the evidence suggests that the accuracy of pulse oximetry differs in subjects of different skin pigmentations to a level that requires particular attention, with decreased accuracy in patients with dark skin.Significance. Some recommendations, both from the literature and contributions from the authors, suggest how future work could address these inaccuracies to potentially improve clinical outcomes. These include the objective quantification of skin pigmentation to replace currently used qualitative methods, and computational modelling for predicting calibration algorithms based on skin colour.


Asunto(s)
COVID-19 , Pigmentación de la Piel , Humanos , Pandemias , Oximetría/métodos , Oxígeno
9.
Europace ; 25(4): 1332-1338, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36881777

RESUMEN

AIMS: Screening for atrial fibrillation (AF) is recommended in the European Society of Cardiology guidelines. Yields of detection can be low due to the paroxysmal nature of the disease. Prolonged heart rhythm monitoring might be needed to increase yield but can be cumbersome and expensive. The aim of this study was to observe the accuracy of an artificial intelligence (AI)-based network to predict paroxysmal AF from a normal sinus rhythm single-lead ECG. METHODS AND RESULTS: A convolutional neural network model was trained and evaluated using data from three AF screening studies. A total of 478 963 single-lead ECGs from 14 831 patients aged ≥65 years were included in the analysis. The training set included ECGs from 80% of participants in SAFER and STROKESTOP II. The remaining ECGs from 20% of participants in SAFER and STROKESTOP II together with all participants in STROKESTOP I were included in the test set. The accuracy was estimated using the area under the receiver operating characteristic curve (AUC). From a single timepoint ECG, the artificial intelligence-based algorithm predicted paroxysmal AF in the SAFER study with an AUC of 0.80 [confidence interval (CI) 0.78-0.83], which had a wide age range of 65-90+ years. Performance was lower in the age-homogenous groups in STROKESTOP I and STROKESTOP II (age range: 75-76 years), with AUCs of 0.62 (CI 0.61-0.64) and 0.62 (CI 0.58-0.65), respectively. CONCLUSION: An artificial intelligence-enabled network has the ability to predict AF from a sinus rhythm single-lead ECG. Performance improves with a wider age distribution.


Asunto(s)
Fibrilación Atrial , Humanos , Anciano , Anciano de 80 o más Años , Fibrilación Atrial/diagnóstico , Inteligencia Artificial , Electrocardiografía/métodos , Sistema de Conducción Cardíaco , Algoritmos
10.
Am J Physiol Heart Circ Physiol ; 325(1): H1-H29, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37000606

RESUMEN

Arterial pulse waves (PWs) such as blood pressure and photoplethysmogram (PPG) signals contain a wealth of information on the cardiovascular (CV) system that can be exploited to assess vascular age and identify individuals at elevated CV risk. We review the possibilities, limitations, complementarity, and differences of reduced-order, biophysical models of arterial PW propagation, as well as theoretical and empirical methods for analyzing PW signals and extracting clinically relevant information for vascular age assessment. We provide detailed mathematical derivations of these models and theoretical methods, showing how they are related to each other. Finally, we outline directions for future research to realize the potential of modeling and analysis of PW signals for accurate assessment of vascular age in both the clinic and in daily life.


Asunto(s)
Arterias , Fotopletismografía , Humanos , Arterias/fisiología , Fotopletismografía/métodos , Análisis de la Onda del Pulso , Modelos Cardiovasculares
11.
Sensors (Basel) ; 23(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36850820

RESUMEN

Intervals of low-quality photoplethysmogram (PPG) signals might lead to significant inaccuracies in estimation of pulse arrival time (PAT) during polysomnography (PSG) studies. While PSG is considered to be a "gold standard" test for diagnosing obstructive sleep apnea (OSA), it also enables tracking apnea-related nocturnal blood pressure fluctuations correlated with PAT. Since the electrocardiogram (ECG) is recorded synchronously with the PPG during PSG, it makes sense to use the ECG signal for PPG signal-quality assessment. (1) Objective: to develop a PPG signal-quality assessment algorithm for robust PAT estimation, and investigate the influence of signal quality on PAT during various sleep stages and events such as OSA. (2) Approach: the proposed algorithm uses R and T waves from the ECG to determine approximate locations of PPG pulse onsets. The MESA database of 2055 PSG recordings was used for this study. (3) Results: the proportions of high-quality PPG were significantly lower in apnea-related oxygen desaturation (matched-pairs rc = 0.88 and rc = 0.97, compared to OSA and hypopnea, respectively, when p < 0.001) and arousal (rc = 0.93 and rc = 0.98, when p < 0.001) than in apnea events. The significantly large effect size of interquartile ranges of PAT distributions was between low- and high-quality PPG (p < 0.001, rc = 0.98), and regular and irregular pulse waves (p < 0.001, rc = 0.74), whereas a lower quality of the PPG signal was found to be associated with a higher interquartile range of PAT across all subjects. Suggested PPG signal quality-based PAT evaluation reduced deviations (e.g., rc = 0.97, rc = 0.97, rc = 0.99 in hypopnea, oxygen desaturation, and arousal stages, respectively, when p < 0.001) and allowed obtaining statistically larger differences between different sleep stages and events. (4) Significance: the implemented algorithm has the potential to increase the robustness of PAT estimation in PSG studies related to nocturnal blood pressure monitoring.


Asunto(s)
Fotopletismografía , Apnea Obstructiva del Sueño , Humanos , Polisomnografía , Frecuencia Cardíaca , Apnea Obstructiva del Sueño/diagnóstico , Oxígeno
12.
Eur J Prev Cardiol ; 30(11): 1101-1117, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-36738307

RESUMEN

Prevention of cardiovascular disease (CVD) remains one of the largest public health challenges of our time. Identifying individuals at increased cardiovascular risk at an asymptomatic, sub-clinical stage is of paramount importance for minimizing disease progression as well as the substantial health and economic burden associated with overt CVD. Vascular ageing (VA) involves the deterioration in vascular structure and function over time and ultimately leads to damage in the heart, brain, kidney, and other organs. Vascular ageing encompasses the cumulative effect of all cardiovascular risk factors on the arterial wall over the life course and thus may help identify those at elevated cardiovascular risk, early in disease development. Although the concept of VA is gaining interest clinically, it is seldom measured in routine clinical practice due to lack of consensus on how to characterize VA as physiological vs. pathological and various practical issues. In this state-of-the-art review and as a network of scientists, clinicians, engineers, and industry partners with expertise in VA, we address six questions related to VA in an attempt to increase knowledge among the broader medical community and move the routine measurement of VA a little closer from bench towards bedside.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Arterias , Envejecimiento
13.
IEEE J Biomed Health Inform ; 27(2): 924-932, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36446010

RESUMEN

Sleep staging is an essential component in the diagnosis of sleep disorders and management of sleep health. Sleep is traditionally measured in a clinical setting and requires a labor-intensive labeling process. We hypothesize that it is possible to perform automated robust 4-class sleep staging using the raw photoplethysmography (PPG) time series and modern advances in deep learning (DL). We used two publicly available sleep databases that included raw PPG recordings, totalling 2,374 patients and 23,055 hours of continuous data. We developed SleepPPG-Net, a DL model for 4-class sleep staging from the raw PPG time series. SleepPPG-Net was trained end-to-end and consists of a residual convolutional network for automatic feature extraction and a temporal convolutional network to capture long-range contextual information. We benchmarked the performance of SleepPPG-Net against models based on the best-reported state-of-the-art (SOTA) algorithms. When benchmarked on a held-out test set, SleepPPG-Net obtained a median Cohen's Kappa ( κ) score of 0.75 against 0.69 for the best SOTA approach. SleepPPG-Net showed good generalization performance to an external database, obtaining a κ score of 0.74 after transfer learning. Overall, SleepPPG-Net provides new SOTA performance. In addition, performance is high enough to open the path to the development of wearables that meet the requirements for usage in clinical applications such as the diagnosis and monitoring of obstructive sleep apnea.


Asunto(s)
Aprendizaje Profundo , Humanos , Fotopletismografía , Algoritmos , Fases del Sueño , Sueño
14.
Br J Anaesth ; 130(1): e33-e36, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35430087

RESUMEN

Recent reports highlight potential inaccuracies of pulse oximetry in patients with various degrees of skin pigmentation. We summarise the literature, provide an overview of potential clinical implications, and provide insights into how pulse oximetry could be improved to mitigate against such potential shortcomings.


Asunto(s)
Oximetría , Pigmentación de la Piel , Humanos , Oxígeno
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3239-3242, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086145

RESUMEN

Screening for atrial fibrillation (AF) could reduce the incidence of stroke by identifying undiagnosed AF and prompting anticoagulation. However, screening may involve recording many electrocardiograms (ECGs) from each participant, several of which require manual review which is costly and time-consuming. The aim of this study was to investigate whether the number of ECG reviews could be reduced by using a model to prioritise ECGs for review, whilst still accurately diagnosing AF. A multiple logistic regression model was created to estimate the likelihood of an ECG exhibiting AF based on the mean RR-interval and variability in RR-intervals. It was trained on 1,428 manually labelled ECGs from 144 AF screening programme participants, and evaluated using 11,443 ECGs from 1,521 participants. When using the model to order ECGs for review, the number of reviews for AF participants was reduced by 74% since no further reviews are required after an AF ECG is identified; however, it did not impact the number of reviews in non-AF participants (the vast majority of participants), so the overall number of reviews was reduced by 3% with no missed AF diagnoses. When using the model to also exclude ECGs from review, the overall number of reviews was reduced by 28% with no missed AF diagnoses, and by 53% with only 4% of AF diagnoses missed. In conclusion, the workload can be reduced by using a model to prioritise ECGs for review. Ordering ECGs alone only provides only a moderate reduction in workload. The additional use of a threshold to exclude ECGs from review provides a much greater reduction in workload at the expense of some missed AF diagnoses. Clinical Relevance-This shows the potential benefit of using a model to prioritise electrocardiograms for review in order to reduce the manual workload of AF screening.


Asunto(s)
Fibrilación Atrial , Accidente Cerebrovascular , Fibrilación Atrial/diagnóstico , Electrocardiografía , Humanos , Tamizaje Masivo , Investigación , Accidente Cerebrovascular/epidemiología
16.
Physiol Meas ; 43(8)2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35853440

RESUMEN

The photoplethysmogram (PPG) signal is widely used in pulse oximeters and smartwatches. A fundamental step in analysing the PPG is the detection of heartbeats. Several PPG beat detection algorithms have been proposed, although it is not clear which performs best.Objective:This study aimed to: (i) develop a framework with which to design and test PPG beat detectors; (ii) assess the performance of PPG beat detectors in different use cases; and (iii) investigate how their performance is affected by patient demographics and physiology.Approach:Fifteen beat detectors were assessed against electrocardiogram-derived heartbeats using data from eight datasets. Performance was assessed using theF1score, which combines sensitivity and positive predictive value.Main results:Eight beat detectors performed well in the absence of movement withF1scores of ≥90% on hospital data and wearable data collected at rest. Their performance was poorer during exercise withF1scores of 55%-91%; poorer in neonates than adults withF1scores of 84%-96% in neonates compared to 98%-99% in adults; and poorer in atrial fibrillation (AF) withF1scores of 92%-97% in AF compared to 99%-100% in normal sinus rhythm.Significance:Two PPG beat detectors denoted 'MSPTD' and 'qppg' performed best, with complementary performance characteristics. This evidence can be used to inform the choice of PPG beat detector algorithm. The algorithms, datasets, and assessment framework are freely available.


Asunto(s)
Fibrilación Atrial , Fotopletismografía , Adulto , Algoritmos , Fibrilación Atrial/diagnóstico , Benchmarking , Electrocardiografía , Frecuencia Cardíaca , Humanos , Recién Nacido
17.
Physiol Meas ; 43(5)2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35508148

RESUMEN

Photoplethysmography is now widely utilised by clinical devices such as pulse oximeters, and wearable devices such as smartwatches. It holds great promise for health monitoring in daily life. This editorial considers whether it would be possible and beneficial to establish best practices for photoplethysmography signal acquisition and processing. It reports progress made towards this, balanced with the challenges of working with a diverse range of photoplethysmography device designs and intended applications, each of which could benefit from different approaches to signal acquisition and processing. It concludes that there are several potential benefits to establishing best practices. However, it is not yet clear whether it is possible to establish best practices which hold across the range of photoplethysmography device designs and applications.


Asunto(s)
Fotopletismografía , Dispositivos Electrónicos Vestibles , Frecuencia Cardíaca , Oximetría , Procesamiento de Señales Asistido por Computador
18.
Proc IEEE Inst Electr Electron Eng ; 110(3): 355-381, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35356509

RESUMEN

Smart wearables provide an opportunity to monitor health in daily life and are emerging as potential tools for detecting cardiovascular disease (CVD). Wearables such as fitness bands and smartwatches routinely monitor the photoplethysmogram signal, an optical measure of the arterial pulse wave that is strongly influenced by the heart and blood vessels. In this survey, we summarize the fundamentals of wearable photoplethysmography and its analysis, identify its potential clinical applications, and outline pressing directions for future research in order to realize its full potential for tackling CVD.

19.
IEEE Trans Biomed Eng ; 69(5): 1707-1716, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34767501

RESUMEN

OBJECTIVE: A novel method was presented to separate the central blood pressure wave (CBPW) into five components with different biophysical and temporal origins. It includes a time-varying emission coefficient ( γ) that quantifies pulse wave generation and reflection at the aortic root. METHODS: The method was applied to normotensive subjects with modulated physiology by inotropic/vasoactive drugs (n = 13), hypertensive subjects (n = 158), and virtual subjects (n = 4,374). RESULTS: γ is directly proportional to aortic flow throughout the cardiac cycle. Mean peak γ increased with increasing pulse pressure (from <30 to >70 mmHg) in the hypertensive (from 1.6 to 2.5, P < 0.001) and in silico (from 1.4 to 2.8, P < 0.001) groups, dobutamine dose (from baseline to 7.5 µg/kg/min) in the normotensive group (from 2.1 to 2.7, P < 0.05), and remained unchanged when peripheral wave reflections were suppressed in silico. This was accompanied by an increase in the percentage contribution of the cardiac-aortic-coupling component of CBPW in systole: from 11% to 23% (P < 0.001) in the hypertensive group, 9% to 21% (P < 0.001) in the in silico group, and 17% to 23% (P < 0.01) in the normotensive group. CONCLUSION: These results suggest that the aortic root is a major reflection site in the systemic arterial network and ventricular-aortic coupling is the main determinant in the elevation of pulsatile pulse pressure. SIGNIFICANCE: Ventricular-aortic coupling is a prime therapeutic target for preventing/treating systolic hypertension.


Asunto(s)
Hipertensión , Aorta/fisiología , Presión Sanguínea/fisiología , Frecuencia Cardíaca , Humanos , Análisis de la Onda del Pulso , Sístole
20.
Am J Physiol Heart Circ Physiol ; 322(4): H493-H522, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34951543

RESUMEN

The photoplethysmogram (PPG) signal is widely measured by clinical and consumer devices, and it is emerging as a potential tool for assessing vascular age. The shape and timing of the PPG pulse wave are both influenced by normal vascular aging, changes in arterial stiffness and blood pressure, and atherosclerosis. This review summarizes research into assessing vascular age from the PPG. Three categories of approaches are described: 1) those which use a single PPG signal (based on pulse wave analysis), 2) those which use multiple PPG signals (such as pulse transit time measurement), and 3) those which use PPG and other signals (such as pulse arrival time measurement). Evidence is then presented on the performance, repeatability and reproducibility, and clinical utility of PPG-derived parameters of vascular age. Finally, the review outlines key directions for future research to realize the full potential of photoplethysmography for assessing vascular age.


Asunto(s)
Fotopletismografía , Rigidez Vascular , Presión Sanguínea/fisiología , Hemodinámica , Análisis de la Onda del Pulso , Reproducibilidad de los Resultados , Rigidez Vascular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...