Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Acoust Soc Am ; 146(2): 973, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31472585

RESUMEN

The receiver-to-source backazimuth of atmospheric infrasound signals is biased when cross-winds are present along the propagation path. Infrasound from 598 surface explosions from over 30 years in northern Finland is measured with high spatial resolution on an array 178 km almost due North. The array is situated in the classical shadow-zone distance from the explosions. However, strong infrasound is almost always observed, which is most plausibly due to partial reflections from stratospheric altitudes. The most probable propagation paths are subject to both tropospheric and stratospheric cross-winds, and the wave-propagation modelling in this study yields good correspondence between the observed backazimuth deviation and cross-winds from the European Centre for Medium-Range Weather Forecasts Reanalysis (ERA)-Interim reanalysis product. This study demonstrates that atmospheric cross-winds can be estimated directly from infrasound data using propagation time and backazimuth deviation observations. This study finds these cross-wind estimates to be in good agreement with the ERA-Interim reanalysis.

2.
Sci Rep ; 7: 46905, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28914257

RESUMEN

This corrects the article DOI: 10.1038/srep39169.

3.
Sci Rep ; 6: 39169, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27976697

RESUMEN

Sulphate aerosol injection has been widely discussed as a possible way to engineer future climate. Monitoring it would require detecting its effects amidst internal variability and in the presence of other external forcings. We investigate how the use of different detection methods and filtering techniques affects the detectability of sulphate aerosol geoengineering in annual-mean global-mean near-surface air temperature. This is done by assuming a future scenario that injects 5 Tg yr-1 of sulphur dioxide into the stratosphere and cross-comparing simulations from 5 climate models. 64% of the studied comparisons would require 25 years or more for detection when no filter and the multi-variate method that has been extensively used for attributing climate change are used, while 66% of the same comparisons would require fewer than 10 years for detection using a trend-based filter. This highlights the high sensitivity of sulphate aerosol geoengineering detectability to the choice of filter. With the same trend-based filter but a non-stationary method, 80% of the comparisons would require fewer than 10 years for detection. This does not imply sulphate aerosol geoengineering should be deployed, but suggests that both detection methods could be used for monitoring geoengineering in global, annual mean temperature should it be needed.

4.
PLoS One ; 10(10): e0137804, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26431427

RESUMEN

OBJECTIVES: In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office's (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. METHOD: The prototype health forecasting alert system introduces an "impact vs likelihood matrix" for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. CONCLUSIONS: The prototype shows some clear improvements over the current alert system. It allows for a much greater degree of flexibility, provides more detailed regional information about the health risks associated with periods of extreme temperatures, and is more coherent with other weather alerts which may make it easier for front line responders to use. It will require validation and engagement with stakeholders before it can be considered for use.


Asunto(s)
Frío , Calor , Mortalidad , Tiempo (Meteorología) , Inglaterra/epidemiología , Predicción , Humanos
5.
PLoS One ; 9(2): e88849, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24533155

RESUMEN

Geoengineering by stratospheric aerosol injection has been proposed as a policy response to warming from human emissions of greenhouse gases, but it may produce unequal regional impacts. We present a simple, intuitive risk-based framework for classifying these impacts according to whether geoengineering increases or decreases the risk of substantial climate change, with further classification by the level of existing risk from climate change from increasing carbon dioxide concentrations. This framework is applied to two climate model simulations of geoengineering counterbalancing the surface warming produced by a quadrupling of carbon dioxide concentrations, with one using a layer of sulphate aerosol in the lower stratosphere, and the other a reduction in total solar irradiance. The solar dimming model simulation shows less regional inequality of impacts compared with the aerosol geoengineering simulation. In the solar dimming simulation, 10% of the Earth's surface area, containing 10% of its population and 11% of its gross domestic product, experiences greater risk of substantial precipitation changes under geoengineering than under enhanced carbon dioxide concentrations. In the aerosol geoengineering simulation the increased risk of substantial precipitation change is experienced by 42% of Earth's surface area, containing 36% of its population and 60% of its gross domestic product.


Asunto(s)
Atmósfera/química , Ingeniería/métodos , Aerosoles , Cambio Climático , Modelos Teóricos , Medición de Riesgo , Sulfatos/química , Luz Solar , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...