Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Vet Sci ; 9: 898325, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268043

RESUMEN

Feedlot performance and carcass characteristics of tropical beef steers backgrounded on buffel grass (Cenchrus ciliaris) only or buffel grass oversown with desmanthus (Desmanthus spp. ; 11.5% initial sward botanical composition) were evaluated. It was hypothesized that tropical beef cattle steers backgrounded on buffel grass only or buffel grass oversown with desmanthus with similar backgrounding growth performance will not differ in feedlot growth performance and carcass quality. Three hundred and twelve Bos indicus × Bos taurus tropical composite steers, 20-23 months old and weighing 413 ± 24 kg, previously backgrounded on buffel grass only or buffel-desmanthus mixed pastures for 147 days were finished on a concentrate diet in the feedlot for 110 days before slaughter. Buffel-desmanthus backgrounded steers had a slightly higher average daily gain (ADG; 1.8 kg/day) than the buffel grass backgrounded steers that had 1.7 kg/day ADG (p < 0.01). However, the final live weight and dry matter intake were not different (p ≥ 0.59). All the carcass traits measured were not different (p ≥ 0.18). Only 4% buffel grass and 8% buffel-desmanthus backgrounded steers fell short of the Meat Standards Australia (MSA) index, a level that is within the 4-9% reported for cattle produced in Queensland and slaughtered between July 2019 and June 2020. These findings indicate that desmanthus can be used to background beef cattle in northern Australia vertosol soil regions, where there is a paucity of adapted pasture legumes, with no negative impact on feedlot performance and carcass quality. The hypothesis that tropical beef cattle steers backgrounded on buffel grass only pastures or buffel grass oversown with desmanthus with similar backgrounding growth performance will have similar feedlot growth performance and carcass quality was accepted.

2.
PLoS One ; 17(1): e0260918, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34982779

RESUMEN

Desmanthus (Desmanthus spp.), a tropically adapted pasture legume, is highly productive and has the potential to reduce methane emissions in beef cattle. However, liveweight gain response to desmanthus supplementation has been inconclusive in ruminants. This study aimed to evaluate weight gain, rumen fermentation and plasma metabolites of Australian tropical beef cattle in response to supplementation with incremental levels of desmanthus forage legume in isonitrogenous diets. Forty-eight Brahman, Charbray and Droughtmaster crossbred beef steers were pen-housed and fed a basal diet of Rhodes grass (Chloris gayana) hay supplemented with 0, 15, 30 or 45% freshly chopped desmanthus forage on dry matter basis, for 140 days. Varying levels of lucerne (Medicago sativa) hay were added in the 0, 15 and 30% diets to ensure that all diets were isonitrogenous with the 45% desmanthus diet. Data were analyzed using the Mixed Model procedures of SAS software. Results showed that the proportion of desmanthus in the diet had no significant effect on steer liveweight, rumen volatile fatty acids molar proportions and plasma metabolites (P ≥ 0.067). Total bilirubin ranged between 3.0 and 3.6 µmol/L for all the diet treatments (P = 0.67). All plasma metabolites measured were within the expected normal range reported for beef cattle. Rumen ammonia nitrogen content was above the 10 mg/dl threshold required to maintain effective rumen microbial activity and maximize voluntary feed intake in cattle fed low-quality tropical forages. The average daily weight gains averaged 0.5 to 0.6 kg/day (P = 0.13) and were within the range required to meet the target slaughter weight for prime beef markets within 2.5 years of age. These results indicate that desmanthus alone or mixed with other high-quality legume forages can be used to supplement grass-based diets to improve tropical beef cattle production in northern Australia with no adverse effect on cattle health.


Asunto(s)
Dieta/veterinaria , Rumen/metabolismo , Vicia/química , Amoníaco/química , Alimentación Animal/análisis , Animales , Australia , Bilirrubina/sangre , Bovinos , Creatinina/sangre , Suplementos Dietéticos , Ácidos Grasos Volátiles/sangre , Ácidos Grasos Volátiles/metabolismo , Concentración de Iones de Hidrógeno , Hidroxibutiratos/sangre , Masculino , Medicago sativa/química , Medicago sativa/metabolismo , Rumen/química , Rumen/microbiología , Vicia/metabolismo , Aumento de Peso
3.
Metabolites ; 11(12)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34940562

RESUMEN

Lipid metabolism, carcass characteristics and fatty acid (FA) composition of the Longissimus dorsi (loin eye) muscle were evaluated in tropical crossbred steers backgrounded on Desmanthus spp. (desmanthus) with or without feedlot finishing. It was hypothesized that steers backgrounded on isonitrogenous diets augmented with incremental proportions of desmanthus will produce carcasses with similar characteristics and FA composition. Forty-eight Brahman, Charbray and Droughtmaster crossbred beef steers were backgrounded for 140 days on Rhodes grass (Chloris gayana) hay augmented with 0, 15, 30 or 45 percent desmanthus on dry matter basis. Lucerne (Medicago sativa) hay was added to the 0, 15 and 30 percent desmanthus diets to ensure that they were isonitrogenous with the 45 percent desmanthus diet. After backgrounding, the two heaviest steers in each pen were slaughtered and the rest were finished in the feedlot for 95 days before slaughter. Muscle biopsy samples were taken at the beginning and end of the backgrounding phase. Carcasses were sampled at slaughter for intramuscular fat (IMF) content, fat melting point (FMP) and FA composition analyses. Increasing the proportion of desmanthus in the diet led to a linear increase in docosanoic acid (p = 0.04) and omega-6/omega-3 polyunsaturated FA ratio (n-6/n-3 PUFA; p = 0.01), while docosahexaenoic acid decreased linearly (p = 0.01). Feedlot finishing increased hot carcass weight, subcutaneous fat depth at the P8 site and dressing percentage (p ≤ 0.04). The n-6/n-3 PUFA ratio was within the recommended < 5 for human diets. IMF was within the consumer-preferred ≥3% level for palatability. The hypothesis that steers backgrounded on isonitrogenous diets augmented with incremental proportions of desmanthus will produce similar carcass characteristics and FA composition was accepted. These findings indicate that a combination of tropical beef cattle backgrounding on desmanthus augmented forage and short-term feedlot finishing produces healthy and highly palatable meat.

4.
Biology (Basel) ; 10(9)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34571820

RESUMEN

The main objective of this study was to compare the effect of supplementing beef cattle with Desmanthus virgatus cv. JCU2, D. bicornutus cv. JCU4, D. leptophyllus cv. JCU7 and lucerne on in vivo methane (CH4) emissions measured by open-circuit respiration chambers (OC) or the GreenFeed emission monitoring (GEM) system. Experiment 1 employed OC and utilized sixteen yearling Brangus steers fed a basal diet of Rhodes grass (Chloris gayana) hay in four treatments-the three Desmanthus cultivars and lucerne (Medicago sativa) at 30% dry matter intake (DMI). Polyethylene glycol (PEG) was added to the diets to neutralize tannin binding and explore the effect on CH4 emissions. Experiment 2 employed GEM and utilized forty-eight animals allocated to four treatments including a basal diet of Rhodes grass hay plus the three Desmanthus cultivars in equal proportions at 0%, 15%, 30% and 45% DMI. Lucerne was added to equilibrate crude protein content in all treatments. Experiment 1 showed no difference in CH4 emissions between the Desmanthus cultivars, between Desmanthus and lucerne or between Desmanthus and the basal diet. Experiment 2 showed an increase in CH4 emissions in the three levels containing Desmanthus. It is concluded that on high-quality diets, Desmanthus does not reduce CH4 emissions.

5.
Metabolites ; 11(6)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199517

RESUMEN

The hypothesis tested was that tropical steers supplemented with the Desmanthus legume and lucerne, a widely characterized temperate legume of high nutritive value, would elicit similar responses in plasma metabolite profiles, productive performance, nitrogen retention, and volatile fatty acids (VFA). The tannin-binding compound, polyethylene glycol-4000 (PEG), was added to the diets (160 g/kg Desmanthus dry matter) with the objective of further exploring nitrogen (N) utilization in the animals supplemented with Desmanthus relative to lucerne. From February to June 2020, sixteen yearling Brangus steers (average liveweight of 232 ± 6 kg) were fed a background diet of Rhodes grass (Chloris gayana) hay for 28 days, before introducing three Desmanthus cultivars (Desmanthus virgatus cv. JCU2, D. bicornutus cv. JCU4, D. leptophyllus cv. JCU7) and lucerne (Medicago sativa) at 30% dry matter intake (DMI). Relative to the backgrounding period, all supplemented steers exhibited similar growth performance. Steers supplemented with Desmanthus recorded a lower DMI and animal growth performance, but higher fecal N concentration than animals supplemented with lucerne. Among the three Desmanthus cultivars, there were no significant differences in N concentrations, VFA, and plasma metabolite profiles. The addition of PEG induced higher rumen iso-acid concentrations and fecal N excretion. However, feeding Desmanthus spp. to tropical Bos indicus steers could be a valuable means of increasing N utilization, which is attributable to the presence of tannins, and, consequently, improve animal productive performance. Since supplementation with lucerne resulted in higher liveweight, daily liveweight gains, and overall animal performance than supplementing with Desmanthus, the tested hypothesis that both supplements will elicit similar animal performance does not hold and must be rejected. Further in vivo investigation is needed to better understand the impact of tannins in Desmanthus on N utilization.

6.
Animals (Basel) ; 10(11)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187296

RESUMEN

The main objective of this study was to investigate the effect of supplementing beef cattle with incremental levels of Desmanthus leptophyllus cv. JCU1 and Desmanthus bicornutus cv. JCU4 on in vivo methane (CH4) emissions and the role of tannins in rumen fermentation. Fourteen yearling Droughtmaster steers were allocated to each of the two Desmanthus species and offered a basal diet of Rhodes grass (Chloris gayana) hay plus fresh Desmanthus at 0%, 15%, 22%, and 31% of dry matter intake (DMI). The 15% and 31% Desmanthus periods lasted 21 days and the 22 and 0% Desmanthus periods, 14 days. Methane production was measured by open-circuit gas exchange in the last two days of each period. The results showed a linear increase in DMI and reduction in CH4 yield with the increasing level of Desmanthus and subsequently condensed tannins in the diet. The added tannin binder polyethylene glycol-4000 did not affect CH4 yield but increased rumen NH3-N and iso-acid concentrations. Therefore, on a low-quality diet, Desmanthus has the potential to increase intake and reduce CH4 emissions. Even though its tannins can bind rumen proteins, the beef cattle anti-methanogenic response to supplementation with Desmanthus may be a combination of rumen fermentation and tannin effects.

7.
Foods ; 8(12)2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31817572

RESUMEN

A comprehensive review of the impact of tropical pasture grazing, nutritional supplementation during feedlot finishing and fat metabolism-related genes on beef cattle performance and meat-eating traits is presented. Grazing beef cattle on low quality tropical forages with less than 5.6% crude protein, 10% soluble starches and 55% digestibility experience liveweight loss. However, backgrounding beef cattle on high quality leguminous forages and feedlot finishing on high-energy diets increase meat flavour, tenderness and juiciness due to improved intramuscular fat deposition and enhanced mono- and polyunsaturated fatty acids. This paper also reviews the roles of stearoyl-CoA desaturase, fatty acid binding protein 4 and fatty acid synthase genes and correlations with meat traits. The review argues that backgrounding of beef cattle on Desmanthus, an environmentally well-adapted and vigorous tropical legume that can persistently survive under harsh tropical and subtropical conditions, has the potential to improve animal performance. It also identifies existing knowledge gaps and research opportunities in nutrition-genetics interactions aimed at a greater understanding of grazing nutrition, feedlot finishing performance, and carcass traits of northern Australian tropical beef cattle to enable red meat industry players to work on marbling, juiciness, tenderness and overall meat-eating characteristics.

8.
Animals (Basel) ; 9(8)2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31404998

RESUMEN

The Australian beef industry is a major contributor to the economy with an estimated annual revenue generation of over seven billion dollars. The tropical state of Queensland accounted for 48% of Australian beef and veal production in 2018. As the third biggest beef exporter in the world, Australia supplies 3% of the world's beef exports and its agricultural sector accounts for an estimated 13.2% of its total greenhouse gas emissions. About 71% of total agricultural emissions are in the form of methane and nitrous oxide. In this review, an overview of the carbon footprint of the beef cattle production system in northern Australia is presented, with emphasis on the mitigation of greenhouse gases. The review also focuses on the tropical legume, Desmanthus, one of the more promising nutritional supplements for methane abatement and improvement of animal growth performance. Among the review's findings is the need to select environmentally well-adapted and vigorous tropical legumes containing tannins that can persistently survive under the harsh northern Australian conditions for driving animal performance, improving meat quality and reducing methane emissions. The paper argues that the use of appropriate legumes such as Desmanthus, is a natural and preferred alternative to the use of chemicals for the abatement of methane emanating from tropical beef cattle production systems. It also highlights current gaps in knowledge and new research opportunities for in vivo studies on the impact of Desmanthus on methane emissions of supplemented tropical beef cattle.

9.
Am J Clin Nutr ; 79(6 Suppl): 1207S-1211S, 2004 06.
Artículo en Inglés | MEDLINE | ID: mdl-15159258

RESUMEN

Canadian beef consumption is approximately 31 kg per annum, or a third of all meats consumed. Beef is a nutrient-rich food, providing good quality protein, vitamins B-6 and B-12, niacin, iron, and zinc. However, animal fats have gained the reputation of being less healthy. The identification of the anticarcinogenic effects of beef extracts due to the presence of conjugated linoleic acid (CLA) has heightened interest in increasing the amount of CLA deposited in beef. Beef cattle produce CLA and deposit these compounds in the meat; thus, beef consumers can receive bioformed CLA. Beef contains both of the bioactive CLA isomers, namely, cis-9, trans-11 and trans-10, cis-12. The relative content of these CLA isomers in beef depends on the feeds consumed by the animals during production. Feeding cattle linoleic acid-rich oils for extended periods of time increases the CLA content of beef. Depending on the type and relative maturity of the pasture, beef from pasture-fed cattle may have a higher CLA content than beef from grain- or silage-fed cattle. In feedlot animals fed high-grain diets, inclusion of dietary oil along with hay during both the growth and finishing phases led to an increase in CLA content from 2.8 to 14 mg/g beef fat, which would provide 77 mg CLA in an 85-g serving of beef. The CLAs appear to be concentrated in intramuscular and subcutaneous fat of beef cattle, with the CLA trans-10, cis-12 isomer being greater in the subcutaneous fat.


Asunto(s)
Alimentos Fortificados , Ácidos Linoleicos Conjugados/análisis , Carne/análisis , Alimentación Animal , Animales , Bovinos , Humanos , Leche/química , Fenómenos Fisiológicos de la Nutrición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...