Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Intervalo de año de publicación
1.
Artículo | WPRIM (Pacífico Occidental) | ID: wpr-831118

RESUMEN

Purpose@#Hereditary cancer syndrome means that inherited genetic mutations can increase a person's risk of developing cancer. We assessed the frequency of germline mutations using an nextgeneration sequencing (NGS)–based multiple-gene panel containing 64 cancer-predisposing genes in Korean breast cancer patients with clinical features of hereditary breast and ovarian cancer syndrome (HBOC). @*Materials and Methods@#A total of 64 genes associated with hereditary cancer syndrome were selected for development of an NGS-based multi-gene panel. Targeted sequencing using the multi-gene panel was performed to identify germline mutations in 496 breast cancer patients with clinical features of HBOC who underwent breast cancer surgery between January 2002 and December 2017. @*Results@#Of 496 patients, 95 patients (19.2%) were found to have 48 deleterious germline mutations in 16 cancer susceptibility genes. The deleterious mutations were found in 39 of 250 patients (15.6%) who had breast cancer and another primary cancer, 38 of 169 patients (22.5%) who had a family history of breast cancer (≥ 2 relatives), 16 of 57 patients (28.1%) who had bilateral breast cancer, and 29 of 84 patients (34.5%) who were diagnosed with breast cancer at younger than 40 years of age. Of the 95 patients with deleterious mutations, 60 patients (63.2%) had BRCA1/2 mutations and 38 patients (40.0%) had non-BRCA1/2 mutations. We detected two novel deleterious mutations in BRCA2 and MLH1. @*Conclusion@#NGS-based multiple-gene panel testing improved the detection rates of deleterious mutations and provided a cost-effective cancer risk assessment.

2.
Bioinformation ; 2(5): 194-6, 2007 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-18305828

RESUMEN

UNLABELLED: GS2PATH is a Web-based pipeline tool to permit functional enrichment of a given gene set from prior knowledge databases, including gene ontology (GO) database and biological pathway databases. The tool also provides an estimation of gene set enrichment, in GO terms, from the databases of the KEGG and BioCarta pathways, which may allow users to compute and compare functional over-representations. This is especially useful in the perspective of biological pathways such as metabolic, signal transduction, genetic information processing, environmental information processing, cellular process, disease, and drug development. It provides relevant images of biochemical pathways with highlighting of the gene set by customized colors, which can directly assist in the visualization of functional alteration. AVAILABILITY: The GS2PATH system is freely available at http://array.kobic.re.kr:8080/arrayport/gs2path/.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA