Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 181(12): 1793-1811, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38369690

RESUMEN

BACKGROUND AND PURPOSE: Voltage sensitivity is a common feature of many membrane proteins, including some G-protein coupled receptors (GPCRs). However, the functional consequences of voltage sensitivity in GPCRs are not well understood. EXPERIMENTAL APPROACH: In this study, we investigated the voltage sensitivity of the post-synaptic metabotropic glutamate receptor mGlu5 and its impact on synaptic transmission. Using biosensors and electrophysiological recordings in non-excitable HEK293T cells or neurons. KEY RESULTS: We found that mGlu5 receptor function is optimal at resting membrane potentials. We observed that membrane depolarization significantly reduced mGlu5 receptor activation, Gq-PLC/PKC stimulation, Ca2+ release and mGlu5 receptor-gated currents through transient receptor potential canonical, TRPC6, channels or glutamate ionotropic NMDA receptors. Notably, we report a previously unknown activity of the NMDA receptor at the resting potential of neurons, enabled by mGlu5. CONCLUSIONS AND IMPLICATIONS: Our findings suggest that mGlu5 receptor activity is directly regulated by membrane voltage which may have a significant impact on synaptic processes and pathophysiological functions.


Asunto(s)
Receptor del Glutamato Metabotropico 5 , Transmisión Sináptica , Animales , Humanos , Células HEK293 , Potenciales de la Membrana , Neuronas/metabolismo , Neuronas/fisiología , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología , Ratones
2.
Sci Rep ; 13(1): 14763, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679476

RESUMEN

In the last two decades, safety concerns about general anesthesia (GA) arose from studies documenting brain cell death in various pharmacological conditions and animal models. Nowadays, a thorough characterization of sevoflurane-induced apoptosis in the entire neonatal mouse brain would help identify and further focus on underlying mechanisms. We performed whole-brain mapping of sevoflurane-induced apoptosis in post-natal day (P) 7 mice using tissue clearing and immunohistochemistry. We found an anatomically heterogenous increase in cleaved-caspase-3 staining. The use of a novel P7 brain atlas showed that the neocortex was the most affected area, followed by the striatum and the metencephalon. Histological characterization in cortical slices determined that post-mitotic neurons were the most affected cell type and followed inter- and intracortical gradients with maximal apoptosis in the superficial layers of the posterodorsal cortex. The unbiased anatomical mapping used here allowed us to confirm sevoflurane-induced apoptosis in the perinatal period, neocortical involvement, and indicated striatal and metencephalic damage while suggesting moderate hippocampal one. The identification of neocortical gradients is consistent with a maturity-dependent mechanism. Further research could then focus on the interference of sevoflurane with neuronal migration and survival during development.


Asunto(s)
Neocórtex , Femenino , Embarazo , Animales , Ratones , Sevoflurano/farmacología , Apoptosis , Muerte Celular , Anestesia General , Muerte Encefálica
3.
Mol Psychiatry ; 26(12): 7596-7609, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34331007

RESUMEN

Shank3 monogenic mutations lead to autism spectrum disorders (ASD). Shank3 is part of the glutamate receptosome that physically links ionotropic NMDA receptors to metabotropic mGlu5 receptors through interactions with scaffolding proteins PSD95-GKAP-Shank3-Homer. A main physiological function of the glutamate receptosome is to control NMDA synaptic function that is required for plasticity induction. Intact glutamate receptosome supports glutamate receptors activation and plasticity induction, while glutamate receptosome disruption blocks receptors activity, preventing the induction of subsequent plasticity. Despite possible impact on metaplasticity and cognitive behaviors, scaffold interaction dynamics and their consequences are poorly defined. Here, we used mGlu5-Homer interaction as a biosensor of glutamate receptosome integrity to report changes in synapse availability for plasticity induction. Combining BRET imaging and electrophysiology, we show that a transient neuronal depolarization inducing NMDA-dependent plasticity disrupts glutamate receptosome in a long-lasting manner at synapses and activates signaling pathways required for the expression of the initiated neuronal plasticity, such as ERK and mTOR pathways. Glutamate receptosome disruption also decreases the NMDA/AMPA ratio, freezing the sensitivity of the synapse to subsequent changes of neuronal activity. These data show the importance of a fine-tuning of protein-protein interactions within glutamate receptosome, driven by changes of neuronal activity, to control plasticity. In a mouse model of ASD, a truncated mutant form of Shank3 prevents the integrity of the glutamate receptosome. These mice display altered plasticity, anxiety-like, and stereotyped behaviors. Interestingly, repairing the integrity of glutamate receptosome and its sensitivity to the neuronal activity rescued synaptic transmission, plasticity, and some behavioral traits of Shank3∆C mice. Altogether, our findings characterize mechanisms by which Shank3 mutations cause ASD and highlight scaffold dynamics as new therapeutic target.


Asunto(s)
Trastorno Autístico , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Modelos Animales de Enfermedad , Endosomas/metabolismo , Ácido Glutámico/metabolismo , Ratones , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/metabolismo
4.
BMC Biol ; 18(1): 81, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620110

RESUMEN

BACKGROUND: mTOR signaling is an essential nutrient and energetic sensing pathway. Here we describe AIMTOR, a sensitive genetically encoded BRET (Bioluminescent Resonance Energy Transfer) biosensor to study mTOR activity in living cells. RESULTS: As a proof of principle, we show in both cell lines and primary cell cultures that AIMTOR BRET intensities are modified by mTOR activity changes induced by specific inhibitors and activators of mTORC1 including amino acids and insulin. We further engineered several versions of AIMTOR enabling subcellular-specific assessment of mTOR activities. We then used AIMTOR to decipher mTOR signaling in physio-pathological conditions. First, we show that mTORC1 activity increases during muscle cell differentiation and in response to leucine stimulation in different subcellular compartments such as the cytosol and at the surface of the lysosome, the nucleus, and near the mitochondria. Second, in hippocampal neurons, we found that the enhancement of neuronal activity increases mTOR signaling. AIMTOR further reveals mTOR-signaling dysfunctions in neurons from mouse models of autism spectrum disorder. CONCLUSIONS: Altogether, our results demonstrate that AIMTOR is a sensitive and specific tool to investigate mTOR-signaling dynamics in living cells and phenotype mTORopathies.


Asunto(s)
Técnicas Biosensibles/métodos , Transducción de Señal , Serina-Treonina Quinasas TOR/fisiología , Animales , Diagnóstico por Imagen/métodos , Células HEK293 , Humanos , Ratones , Músculo Cuádriceps/fisiología
5.
Sci Rep ; 8(1): 16262, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389966

RESUMEN

Fluorescence imaging in the brain of freely behaving mice is challenging due to severe miniaturization constraints. In particular, the ability to image a large field of view at high temporal resolution and with efficient out-of-focus background rejection still raises technical difficulties. Here, we present a novel fiberscope system that provides fast (up to 200 Hz) background-free fluorescence imaging in freely behaving mice over a field of view of diameter 230 µm. The fiberscope is composed of a custom-made multipoint-scanning confocal microscope coupled to the animal with an image guide and a micro-objective. By simultaneously registering a multipoint-scanning confocal image and a conventional widefield image, we subtracted the residual out-of-focus background and provided a background-free confocal image. Illumination and detection pinholes were created using a digital micromirror device, providing high adaptability to the sample structure and imaging conditions. Using this novel imaging tool, we demonstrated fast fluorescence imaging of microvasculature up to 120 µm deep in the mouse cortex, with an out-of-focus background reduced by two orders of magnitude compared with widefield microscopy. Taking advantage of the high acquisition rate (200 Hz), we measured red blood cell velocity in the cortical microvasculature and showed an increase in awake, unrestrained mice compared with anaesthetized animals.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Tecnología de Fibra Óptica/métodos , Microscopía Intravital/métodos , Microtecnología/métodos , Animales , Velocidad del Flujo Sanguíneo , Corteza Cerebral/irrigación sanguínea , Eritrocitos/fisiología , Tecnología de Fibra Óptica/instrumentación , Microscopía Intravital/instrumentación , Rayos Láser , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Microtecnología/instrumentación , Microvasos/diagnóstico por imagen , Modelos Animales , Fibras Ópticas
6.
Front Comput Neurosci ; 11: 118, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29375357

RESUMEN

A growing number of tools now allow live recordings of various signaling pathways and protein-protein interaction dynamics in time and space by ratiometric measurements, such as Bioluminescence Resonance Energy Transfer (BRET) Imaging. Accurate and reproducible analysis of ratiometric measurements has thus become mandatory to interpret quantitative imaging. In order to fulfill this necessity, we have developed an open source toolset for Fiji-BRET-Analyzer-allowing a systematic analysis, from image processing to ratio quantification. We share this open source solution and a step-by-step tutorial at https://github.com/ychastagnier/BRET-Analyzer. This toolset proposes (1) image background subtraction, (2) image alignment over time, (3) a composite thresholding method of the image used as the denominator of the ratio to refine the precise limits of the sample, (4) pixel by pixel division of the images and efficient distribution of the ratio intensity on a pseudocolor scale, and (5) quantification of the ratio mean intensity and standard variation among pixels in chosen areas. In addition to systematize the analysis process, we show that the BRET-Analyzer allows proper reconstitution and quantification of the ratiometric image in time and space, even from heterogeneous subcellular volumes. Indeed, analyzing twice the same images, we demonstrate that compared to standard analysis BRET-Analyzer precisely define the luminescent specimen limits, enlightening proficient strengths from small and big ensembles over time. For example, we followed and quantified, in live, scaffold proteins interaction dynamics in neuronal sub-cellular compartments including dendritic spines, for half an hour. In conclusion, BRET-Analyzer provides a complete, versatile and efficient toolset for automated reproducible and meaningful image ratio analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...