Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Clin Genet ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561231

RESUMEN

Xq28 int22h-1/int22h-2 duplication is the result of non-allelic homologous recombination between int22h-1/int22h-2 repeats separated by 0.5 Mb. It is responsible for a syndromic form of intellectual disability (ID), with recurrent infections and atopic diseases. Minor defects, nonspecific facial dysmorphic features, and overweight have also been described. Half of female carriers have been reported with ID, whereas all reported evaluated born males present mild to moderate ID, suggesting complete penetrance. We collected data on 15 families from eight university hospitals. Among them, 40 patients, 21 females (one fetus), and 19 males (two fetuses), were carriers of typical or atypical Xq28 int22h-1/int22h-2 duplication. Twenty-one individuals were considered asymptomatic (16 females and 5 males), without significantly higher rate of recurrent infections, atopia, overweight, or facial dysmorphism. Approximately 67% live-born males and 23% live-born female carriers of the typical duplication did not have obvious signs of intellectual disability, suggesting previously undescribed incomplete penetrance or low expression in certain carriers. The possibility of a second-hit or modifying factors to this possible susceptibility locus is yet to be studied but a possible observational bias should be considered in assessing such challenging X-chromosome copy number gains. Additional segregation studies should help to quantify this newly described incomplete penetrance.

2.
Am J Med Genet A ; : e63580, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511524

RESUMEN

Deletions of the long arm of chromosome 20 (20q) are rare, with only 16 reported patients displaying a proximal interstitial 20q deletion. A 1.62 Mb minimal critical region at 20q11.2, encompassing three genes GDF5, EPB41L1, and SAMHD1, is proposed to be responsible for this syndrome. The leading clinical features include growth retardation, intractable feeding difficulties with gastroesophageal reflux, hypotonia and psychomotor developmental delay. Common facial dysmorphisms including triangular face, hypertelorism, and hypoplastic alae nasi were additionally reported. Here, we present the clinical and molecular findings of five new patients with proximal interstitial 20q deletions. We analyzed the phenotype and molecular data of all previously reported patients with 20q11.2q12 microdeletions, along with our five new cases. Copy number variation analysis of patients in our cohort has enabled us to identify the second critical region in the 20q11.2q12 region and redefine the first region that is initially identified. The first critical region spans 359 kb at 20q11.2, containing six MIM genes, including two disease-causing genes, GDF5 and CEP250. The second critical region spans 706 kb at 20q12, encompassing four MIM genes, including two disease-causing genes, MAFB and TOP1. We propose GDF5 to be the primary candidate gene generating the phenotype of patients with 20q11.2 deletions. Moreover, we hypothesize TOP1 as a potential candidate gene for the second critical region at 20q12. Of note, we cannot exclude the possibility of a synergistic role of other genes involved in the deletion, including a contiguous gene deletion syndrome or position effect affecting both critical regions. Further studies focusing on patients with proximal 20q deletions are required to support our hypothesis.

3.
J Thromb Haemost ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38484912

RESUMEN

BACKGROUND: No F8 genetic abnormality is detected in approximately 1% to 2% of patients with severe hemophilia A (HA) using conventional genetic approaches. In these patients, deep intronic variation or F8 disrupting genomic rearrangement could be causal. OBJECTIVES: The study aimed to identify the causal variation in families with a history of severe HA for whom genetic investigations failed. METHODS: We performed whole F8 gene sequencing in 8 propositi. Genomic rearrangements were confirmed by Sanger sequencing of breakpoint junctions and/or quantitative polymerase chain reaction. RESULTS: A structural variant disrupting F8 was found in each propositus, so that all the 815 families with a history of severe HA registered in our laboratory received a conclusive genetic diagnosis. These structural variants consisted of 3 balanced inversions, 3 large insertions of gained regions, and 1 retrotransposition of a mobile element. The 3 inversions were 105 Mb, 1.97 Mb, and 0.362 Mb in size. Among the insertions of gained regions, one corresponded to the insertion of a 34 kb gained region from chromosome 6q27 in F8 intron 6, another was the insertion of a 447 kb duplicated region from chromosome 9p22.1 in F8 intron 14, and the last one was the insertion of an Xq28 349 kb gained in F8 intron 5. CONCLUSION: All the genetically unsolved cases of severe HA in this cohort were due to structural variants disrupting F8. This study highlights the effectiveness of whole F8 sequencing to improve the molecular diagnosis of HA when the conventional approach fails.

4.
Epilepsia Open ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38544349

RESUMEN

OBJECTIVES: Myotonia is a clinical sign typical of a group of skeletal muscle channelopathies, the non-dystrophic myotonias. These disorders are electrophysiologically characterized by altered membrane excitability, due to specific genetic variants in known causative genes (CLCN1 and SCN4A). Juvenile Myoclonic Epilepsy (JME) is an epileptic syndrome identified as idiopathic generalized epilepsy, its genetics is complex and still unclarified. The co-occurrence of these two phenotypes is rare and the causes likely have a genetic background. In this study, we have genetically investigated an Italian family in which co-segregates myotonia, JME, or abnormal EEG without seizures was observed. METHODS: All six individuals of the family, 4 affected and 2 unaffected, were clinically evaluated; EMG and EEG examinations were performed. For genetic testing, Exome Sequencing was performed for the six family members and Sanger sequencing was used to confirm the candidate variant. RESULTS: Four family members, the mother and three siblings, were affected by myotonia. Moreover, EEG recordings revealed interictal generalized sharp-wave discharges in all affected individuals, and two siblings were affected by JME. All four affected members share the same identified variant, c.644 T > C, p.Ile215Thr, in SCN4A gene. Variants that could account for the epileptic phenotype alone, separately from the myotonic one, were not identified. SIGNIFICANCE: These results provide supporting evidence that both myotonic and epileptic phenotypes could share a common genetic background, due to variants in SCN4A gene. SCN4A pathogenic variants, already known to be causative of myotonia, likely increase the susceptibility to epilepsy in our family. PLAIN LANGUAGE SUMMARY: This study analyzed all members of an Italian family, in which the mother and three siblings had myotonia and epilepsy. Genetic analysis allowed to identify a variant in the SCN4A gene, which appears to be the cause of both clinical signs in this family.

5.
medRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496558

RESUMEN

Genes encoding long non-coding RNAs (lncRNAs) comprise a large fraction of the human genome, yet haploinsufficiency of a lncRNA has not been shown to cause a Mendelian disease. CHASERR is a highly conserved human lncRNA adjacent to CHD2-a coding gene in which de novo loss-of-function variants cause developmental and epileptic encephalopathy. Here we report three unrelated individuals each harboring an ultra-rare heterozygous de novo deletion in the CHASERR locus. We report similarities in severe developmental delay, facial dysmorphisms, and cerebral dysmyelination in these individuals, distinguishing them from the phenotypic spectrum of CHD2 haploinsufficiency. We demonstrate reduced CHASERR mRNA expression and corresponding increased CHD2 mRNA and protein in whole blood and patient-derived cell lines-specifically increased expression of the CHD2 allele in cis with the CHASERR deletion, as predicted from a prior mouse model of Chaserr haploinsufficiency. We show for the first time that de novo structural variants facilitated by Alu-mediated non-allelic homologous recombination led to deletion of a non-coding element (the lncRNA CHASERR) to cause a rare syndromic neurodevelopmental disorder. We also demonstrate that CHD2 has bidirectional dosage sensitivity in human disease. This work highlights the need to carefully evaluate other lncRNAs, particularly those upstream of genes associated with Mendelian disorders.

6.
Mol Genet Genomic Med ; 12(1): e2363, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38284452

RESUMEN

INTRODUCTION AND METHODS: We report two series of individuals with DDX3X variations, one (48 individuals) from physicians and one (44 individuals) from caregivers. RESULTS: These two series include several symptoms in common, with fairly similar distribution, which suggests that caregivers' data are close to physicians' data. For example, both series identified early childhood symptoms that were not previously described: feeding difficulties, mean walking age, and age at first words. DISCUSSION: Each of the two datasets provides complementary knowledge. We confirmed that symptoms are similar to those in the literature and provides more details on feeding difficulties. Caregivers considered that the symptom attention-deficit/hyperactivity disorder were most worrisome. Both series also reported sleep disturbance. Recently, anxiety has been reported in individuals with DDX3X variants. We strongly suggest that attention-deficit/hyperactivity disorder, anxiety, and sleep disorders need to be treated.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Cuidadores , Preescolar , Humanos , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/terapia , ARN Helicasas DEAD-box , Autoinforme , Lactante
7.
Neurology ; 102(2): e207945, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38165337

RESUMEN

BACKGROUND AND OBJECTIVES: Heterozygous variants in RAR-related orphan receptor B (RORB) have recently been associated with susceptibility to idiopathic generalized epilepsy. However, few reports have been published so far describing pathogenic variants of this gene in patients with epilepsy and intellectual disability (ID). In this study, we aimed to delineate the epilepsy phenotype associated with RORB pathogenic variants and to provide arguments in favor of the pathogenicity of variants. METHODS: Through an international collaboration, we analyzed seizure characteristics, EEG data, and genotypes of a cohort of patients with heterozygous variants in RORB. To gain insight into disease mechanisms, we performed ex vivo cortical electroporation in mouse embryos of 5 selected variants, 2 truncating and 3 missense, and evaluated on expression and quantified changes in axonal morphology. RESULTS: We identified 35 patients (17 male, median age 10 years, range 2.5-23 years) carrying 32 different heterozygous variants in RORB, including 28 single-nucleotide variants or small insertions/deletions (12 missense, 12 frameshift or nonsense, 2 splice-site variants, and 2 in-frame deletions), and 4 microdeletions; de novo in 18 patients and inherited in 10. Seizures were reported in 31/35 (89%) patients, with a median age at onset of 3 years (range 4 months-12 years). Absence seizures occurred in 25 patients with epilepsy (81%). Nineteen patients experienced a single seizure type: absences, myoclonic absences, or absences with eyelid myoclonia and focal seizures. Nine patients had absence seizures combined with other generalized seizure types. One patient had presented with absences associated with photosensitive occipital seizures. Three other patients had generalized tonic-clonic seizures without absences. ID of variable degree was observed in 85% of the patients. Expression studies in cultured neurons showed shorter axons for the 5 tested variants, both truncating and missense variants, supporting an impaired protein function. DISCUSSION: In most patients, the phenotype of the RORB-related disorder associates absence seizures with mild-to-moderate ID. In silico and in vitro evaluation of the variants in our cohort, including axonal morphogenetic experiments in cultured neurons, supports their pathogenicity, showing a hypomorphic effect.


Asunto(s)
Epilepsia Tipo Ausencia , Epilepsia Generalizada , Discapacidad Intelectual , Humanos , Masculino , Animales , Ratones , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Lactante , Convulsiones , Fenotipo , Epilepsia Tipo Ausencia/genética , Epilepsia Generalizada/genética , Genotipo , Miembro 2 del Grupo F de la Subfamilia 1 de Receptores Nucleares
8.
Eur J Med Genet ; 67: 104893, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070825

RESUMEN

Developmental and epileptic encephalopathies (DEEs) refer to a group of severe epileptic syndromes characterized by seizures as well as a developmental delay which can be a consequence of the underlying etiology and/or the epileptic encephalopathy. The genes responsible for DEEs are numerous and their number is increasing since the availability of Next-Generation Sequencing. Pathogenic variants in GRM7, encoding the metabotropic glutamate receptor 7, were recently shown as a cause of a severe DEE with autosomal recessive inheritance. To date, only ten patients have been reported in the literature, generally with severe phenotypes including early-onset epilepsy, microcephaly, brain anomalies, and spasticity. We report here 5 patients from 3 independent families with biallelic variants in the GRM7 gene. We review the literature and provide further elements for the understanding of the genotype-phenotype correlation of this rare syndrome.


Asunto(s)
Encefalopatías , Epilepsia , Trastornos del Neurodesarrollo , Receptores de Glutamato Metabotrópico , Humanos , Epilepsia/genética , Encefalopatías/genética , Convulsiones , Trastornos del Neurodesarrollo/genética , Fenotipo
9.
Genet Med ; 26(1): 101007, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37860968

RESUMEN

PURPOSE: BCL11B-related disorder (BCL11B-RD) arises from rare genetic variants within the BCL11B gene, resulting in a distinctive clinical spectrum encompassing syndromic neurodevelopmental disorder, with or without intellectual disability, associated with facial features and impaired immune function. This study presents an in-depth clinico-biological analysis of 20 newly reported individuals with BCL11B-RD, coupled with a characterization of genome-wide DNA methylation patterns of this genetic condition. METHODS: Through an international collaboration, clinical and molecular data from 20 individuals were systematically gathered, and a comparative analysis was conducted between this series and existing literature. We further scrutinized peripheral blood DNA methylation profile of individuals with BCL11B-RD, contrasting them with healthy controls and other neurodevelopmental disorders marked by established episignature. RESULTS: Our findings unveil rarely documented clinical manifestations, notably including Rubinstein-Taybi-like facial features, craniosynostosis, and autoimmune disorders, all manifesting within the realm of BCL11B-RD. We refine the intricacies of T cell compartment alterations of BCL11B-RD, revealing decreased levels naive CD4+ T cells and recent thymic emigrants while concurrently observing an elevated proportion of effector-memory expressing CD45RA CD8+ T cells (TEMRA). Finally, a distinct DNA methylation episignature exclusive to BCL11B-RD is unveiled. CONCLUSION: This study serves to enrich our comprehension of the clinico-biological landscape of BCL11B-RD, potentially furnishing a more precise framework for diagnosis and follow-up of individuals carrying pathogenic BCL11B variant. Moreover, the identification of a unique DNA methylation episignature offers a valuable diagnosis tool for BCL11B-RD, thereby facilitating routine clinical practice by empowering physicians to reevaluate variants of uncertain significance within the BCL11B gene.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Linfocitos T CD8-positivos/metabolismo , Factores de Transcripción/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Metilación de ADN/genética , Proteínas Supresoras de Tumor/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
10.
Eur J Hum Genet ; 32(2): 190-199, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37872275

RESUMEN

Variants of uncertain significance (VUS) are a significant issue for the molecular diagnosis of rare diseases. The publication of episignatures as effective biomarkers of certain Mendelian neurodevelopmental disorders has raised hopes to help classify VUS. However, prediction abilities of most published episignatures have not been independently investigated yet, which is a prerequisite for an informed and rigorous use in a diagnostic setting. We generated DNA methylation data from 101 carriers of (likely) pathogenic variants in ten different genes, 57 VUS carriers, and 25 healthy controls. Combining published episignature information and new validation data with a k-nearest-neighbour classifier within a leave-one-out scheme, we provide unbiased specificity and sensitivity estimates for each of the signatures. Our procedure reached 100% specificity, but the sensitivities unexpectedly spanned a very large spectrum. While ATRX, DNMT3A, KMT2D, and NSD1 signatures displayed a 100% sensitivity, CREBBP-RSTS and one of the CHD8 signatures reached <40% sensitivity on our dataset. Remaining Cornelia de Lange syndrome, KMT2A, KDM5C and CHD7 signatures reached 70-100% sensitivity at best with unstable performances, suffering from heterogeneous methylation profiles among cases and rare discordant samples. Our results call for cautiousness and demonstrate that episignatures do not perform equally well. Some signatures are ready for confident use in a diagnostic setting. Yet, it is imperative to characterise the actual validity perimeter and interpretation of each episignature with the help of larger validation sample sizes and in a broader set of episignatures.


Asunto(s)
Trastornos del Neurodesarrollo , Patología Molecular , Humanos , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Metilación de ADN , Biomarcadores
11.
Epilepsia ; 65(4): 1029-1045, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135915

RESUMEN

OBJECTIVE: The postsynaptic density protein of excitatory neurons PSD-95 is encoded by discs large MAGUK scaffold protein 4 (DLG4), de novo pathogenic variants of which lead to DLG4-related synaptopathy. The major clinical features are developmental delay, intellectual disability (ID), hypotonia, sleep disturbances, movement disorders, and epilepsy. Even though epilepsy is present in 50% of the individuals, it has not been investigated in detail. We describe here the phenotypic spectrum of epilepsy and associated comorbidities in patients with DLG4-related synaptopathy. METHODS: We included 35 individuals with a DLG4 variant and epilepsy as part of a multicenter study. The DLG4 variants were detected by the referring laboratories. The degree of ID, hypotonia, developmental delay, and motor disturbances were evaluated by the referring clinician. Data on awake and sleep electroencephalography (EEG) and/or video-polygraphy and brain magnetic resonance imaging were collected. Antiseizure medication response was retrospectively assessed by the referring clinician. RESULTS: A large variety of seizure types was reported, although focal seizures were the most common. Encephalopathy related to status epilepticus during slow-wave sleep (ESES)/developmental epileptic encephalopathy with spike-wave activation during sleep (DEE-SWAS) was diagnosed in >25% of the individuals. All but one individual presented with neurodevelopmental delay. Regression in verbal and/or motor domains was observed in all individuals who suffered from ESES/DEE-SWAS, as well as some who did not. We could not identify a clear genotype-phenotype relationship even between individuals with the same DLG4 variants. SIGNIFICANCE: Our study shows that a subgroup of individuals with DLG4-related synaptopathy have DEE, and approximately one fourth of them have ESES/DEE-SWAS. Our study confirms DEE as part of the DLG4-related phenotypic spectrum. Occurrence of ESES/DEE-SWAS in DLG4-related synaptopathy requires proper investigation with sleep EEG.


Asunto(s)
Encefalopatías , Epilepsia Generalizada , Epilepsia , Discapacidad Intelectual , Humanos , Estudios Retrospectivos , Hipotonía Muscular , Epilepsia/diagnóstico por imagen , Epilepsia/genética , Epilepsia/complicaciones , Encefalopatías/genética , Convulsiones/complicaciones , Epilepsia Generalizada/complicaciones , Electroencefalografía/métodos , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Homólogo 4 de la Proteína Discs Large/genética
12.
Hum Genet ; 143(1): 71-84, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38117302

RESUMEN

Coffin-Siris syndrome (CSS) is a rare multisystemic autosomal dominant disorder. Since 2012, alterations in genes of the SWI/SNF complex were identified as the molecular basis of CSS, studying largely pediatric cohorts. Therefore, there is a lack of information on the phenotype in adulthood, particularly on the clinical outcome in adulthood and associated risks. In an international collaborative effort, data from 35 individuals ≥ 18 years with a molecularly ascertained CSS diagnosis (variants in ARID1B, ARID2, SMARCA4, SMARCB1, SMARCC2, SMARCE1, SOX11, BICRA) using a comprehensive questionnaire was collected. Our results indicate that overweight and obesity are frequent in adults with CSS. Visual impairment, scoliosis, and behavioral anomalies are more prevalent than in published pediatric or mixed cohorts. Cognitive outcomes range from profound intellectual disability (ID) to low normal IQ, with most individuals having moderate ID. The present study describes the first exclusively adult cohort of CSS individuals. We were able to delineate some features of CSS that develop over time and have therefore been underrepresented in previously reported largely pediatric cohorts, and provide recommendations for follow-up.


Asunto(s)
Anomalías Múltiples , Cara/anomalías , Deformidades Congénitas de la Mano , Discapacidad Intelectual , Micrognatismo , Adulto , Humanos , Niño , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Anomalías Múltiples/genética , Anomalías Múltiples/diagnóstico , Micrognatismo/genética , Micrognatismo/diagnóstico , Deformidades Congénitas de la Mano/genética , Cuello/anomalías , Fenotipo , ADN Helicasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética
13.
Cells ; 12(20)2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37887313

RESUMEN

De novo mutations in GNAO1, the gene encoding the major neuronal G protein Gαo, cause a spectrum of pediatric encephalopathies with seizures, motor dysfunction, and developmental delay. Of the >80 distinct missense pathogenic variants, many appear to uniformly destabilize the guanine nucleotide handling of the mutant protein, speeding up GTP uptake and deactivating GTP hydrolysis. Zinc supplementation emerges as a promising treatment option for this disease, as Zn2+ ions reactivate the GTP hydrolysis on the mutant Gαo and restore cellular interactions for some of the mutants studied earlier. The molecular etiology of GNAO1 encephalopathies needs further elucidation as a prerequisite for the development of efficient therapeutic approaches. In this work, we combine clinical and medical genetics analysis of a novel GNAO1 mutation with an in-depth molecular dissection of the resultant protein variant. We identify two unrelated patients from Norway and France with a previously unknown mutation in GNAO1, c.509C>G that results in the production of the Pro170Arg mutant Gαo, leading to severe developmental and epileptic encephalopathy. Molecular investigations of Pro170Arg identify this mutant as a unique representative of the pathogenic variants. Its 100-fold-accelerated GTP uptake is not accompanied by a loss in GTP hydrolysis; Zn2+ ions induce a previously unseen effect on the mutant, forcing it to lose the bound GTP. Our work combining clinical and molecular analyses discovers a novel, biochemically distinct pathogenic missense variant of GNAO1 laying the ground for personalized treatment development.


Asunto(s)
Encefalopatías , Humanos , Niño , Mutación/genética , Proteínas de Unión al GTP/metabolismo , Iones/metabolismo , Guanosina Trifosfato , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo
14.
medRxiv ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37873138

RESUMEN

Sequence-based genetic testing currently identifies causative genetic variants in ∼50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. Rare epigenetic variations ("epivariants") can drive disease by modulating gene expression at single loci, whereas genome-wide DNA methylation changes can result in distinct "episignature" biomarkers for monogenic disorders in a growing number of rare diseases. Here, we interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 516 individuals with genetically unsolved DEEs who had previously undergone extensive genetic testing. We identified rare differentially methylated regions (DMRs) and explanatory episignatures to discover causative and candidate genetic etiologies in 10 individuals. We then used long-read sequencing to identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and two copy number variants. We also identify pathogenic sequence variants associated with episignatures; some had been missed by previous exome sequencing. Although most DEE genes lack known episignatures, the increase in diagnostic yield for DNA methylation analysis in DEEs is comparable to the added yield of genome sequencing. Finally, we refine an episignature for CHD2 using an 850K methylation array which was further refined at higher CpG resolution using bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate genetic causes as ∼2% (10/516) for unsolved DEE cases.

15.
Eur J Med Genet ; 66(11): 104852, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37758168

RESUMEN

Defects in L-serine biosynthesis are a group of autosomal recessive diseases resulting in a wide phenotypic spectrum ranging from viable to lethal presentations and caused by variants in the three genes encoding the L-serine biosynthesis enzymes, PHGDH, PSAT1, and PSPH. Neu-Laxova syndrome (NLS) is the fetal form of this group, characterized by multiple congenital anomalies including severe intrauterine growth retardation, cutaneous lesions extending from ichthyosis to severe restrictive dermopathy with ectropion and eclabion, edema, microcephaly, central nervous system abnormalities, and flexion contractures. Here we report on two unrelated fetuses with an attenuated phenotype of NLS, that initially evoked Taybi-Linder syndrome. They carry biallelic pathogenic variants in the PHGDH gene. These observations expand the phenotypic continuum of L-serine biosynthesis defects, and illustrate the phenotypic overlap between NLS and microcephalic primordial dwarfism.


Asunto(s)
Enanismo , Microcefalia , Femenino , Humanos , Microcefalia/genética , Microcefalia/patología , Feto/patología , Enanismo/genética , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/patología , Serina
16.
Epilepsia ; 64(12): 3377-3388, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37734923

RESUMEN

OBJECTIVE: N-methyl-d-aspartate (NMDA) receptors are expressed at synaptic sites, where they mediate fast excitatory neurotransmission. NMDA receptors are critical to brain development and cognitive function. Natural variants to the GRIN1 gene, which encodes the obligatory GluN1 subunit of the NMDA receptor, are associated with severe neurological disorders that include epilepsy, intellectual disability, and developmental delay. Here, we investigated the pathogenicity of three missense variants to the GRIN1 gene, p. Ile148Val (GluN1-3b[I481V]), p.Ala666Ser (GluN1-3b[A666S]), and p.Tyr668His (GluN1-3b[Y668H]). METHODS: Wild-type and variant-containing NMDA receptors were expressed in HEK293 cells and primary hippocampal neurons. Patch-clamp electrophysiology and pharmacology were used to profile the functional properties of the receptors. Receptor surface expression was evaluated using fluorescently tagged receptors and microscopy. RESULTS: Our data demonstrate that the GluN1(I481V) variant is inhibited by the open pore blockers ketamine and memantine with reduce potency but otherwise has little effect on receptor function. By contrast, the other two variants exhibit gain-of-function molecular phenotypes. Glycine sensitivity was enhanced in receptors containing the GluN1(A666S) variant and the potency of pore block by memantine and ketamine was reduced, whereas that for MK-801 was increased. The most pronounced functional deficits, however, were found in receptors containing the GluN1(Y668H) variant. GluN1(Y668H)/2A receptors showed impaired surface expression, were more sensitive to glycine and glutamate by an order of magnitude, and exhibited impaired block by extracellular magnesium ions, memantine, ketamine, and MK-801. These variant receptors were also activated by either glutamate or glycine alone. Single-receptor recordings revealed that this receptor variant opened to several conductance levels and activated more frequently than wild-type GluN1/2A receptors. SIGNIFICANCE: Our study reveals a critical functional locus of the receptor (GluN1[Y668]) that couples receptor gating to ion channel conductance, which when mutated may be associated with neurological disorder.


Asunto(s)
Ketamina , Trastornos del Neurodesarrollo , Humanos , Memantina/farmacología , Maleato de Dizocilpina/farmacología , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Células HEK293 , Glutamatos , Trastornos del Neurodesarrollo/genética , Glicina , Proteínas del Tejido Nervioso/metabolismo
18.
Eur J Hum Genet ; 31(8): 895-904, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37188826

RESUMEN

Microduplications involving the MYT1L gene have mostly been described in series of patients with isolated schizophrenia. However, few reports have been published, and the phenotype has still not been well characterized. We sought to further characterize the phenotypic spectrum of this condition by describing the clinical features of patients with a pure 2p25.3 microduplication that includes all or part of MYT1L. We assessed 16 new patients with pure 2p25.3 microduplications recruited through a French national collaboration (n = 15) and the DECIPHER database (n = 1). We also reviewed 27 patients reported in the literature. For each case, we recorded clinical data, the microduplication size, and the inheritance pattern. The clinical features were variable and included developmental and speech delays (33%), autism spectrum disorder (ASD, 23%), mild-to-moderate intellectual disability (ID, 21%), schizophrenia (23%), or behavioral disorders (16%). Eleven patients did not have an obvious neuropsychiatric disorder. The microduplications ranged from 62.4 kb to 3.8 Mb in size and led to duplication of all or part of MYT1L; seven of these duplications were intragenic. The inheritance pattern was available for 18 patients: the microduplication was inherited in 13 cases, and all parents but one had normal phenotype. Our comprehensive review and expansion of the phenotypic spectrum associated with 2p25.3 microduplications involving MYT1L should help clinicians to better assess, counsel and manage affected individuals. MYT1L microduplications are characterized by a spectrum of neuropsychiatric phenotypes with incomplete penetrance and variable expressivity, which are probably due to as-yet unknown genetic and nongenetic modifiers.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Humanos , Fenotipo , Discapacidad Intelectual/genética , Patrón de Herencia , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética
20.
Genet Med ; 25(8): 100856, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37092537

RESUMEN

PURPOSE: Dominant variants in the retinoic acid receptor beta (RARB) gene underlie a syndromic form of microphthalmia, known as MCOPS12, which is associated with other birth anomalies and global developmental delay with spasticity and/or dystonia. Here, we report 25 affected individuals with 17 novel pathogenic or likely pathogenic variants in RARB. This study aims to characterize the functional impact of these variants and describe the clinical spectrum of MCOPS12. METHODS: We used in vitro transcriptional assays and in silico structural analysis to assess the functional relevance of RARB variants in affecting the normal response to retinoids. RESULTS: We found that all RARB variants tested in our assays exhibited either a gain-of-function or a loss-of-function activity. Loss-of-function variants disrupted RARB function through a dominant-negative effect, possibly by disrupting ligand binding and/or coactivators' recruitment. By reviewing clinical data from 52 affected individuals, we found that disruption of RARB is associated with a more variable phenotype than initially suspected, with the absence in some individuals of cardinal features of MCOPS12, such as developmental eye anomaly or motor impairment. CONCLUSION: Our study indicates that pathogenic variants in RARB are functionally heterogeneous and associated with extensive clinical heterogeneity.


Asunto(s)
Microftalmía , Receptores de Ácido Retinoico , Humanos , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Retinoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...