Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Sci Rep ; 14(1): 10555, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719902

RESUMEN

Heat stress exposure in intermittent heat waves and subsequent exposure during war theaters pose a clinical challenge that can lead to multi-organ dysfunction and long-term complications in the elderly. Using an aged mouse model and high-throughput sequencing, this study investigated the molecular dynamics of the liver-brain connection during heat stress exposure. Distinctive gene expression patterns induced by periodic heat stress emerged in both brain and liver tissues. An altered transcriptome profile showed heat stress-induced altered acute phase response pathways, causing neural, hepatic, and systemic inflammation and impaired synaptic plasticity. Results also demonstrated that proinflammatory molecules such as S100B, IL-17, IL-33, and neurological disease signaling pathways were upregulated, while protective pathways like aryl hydrocarbon receptor signaling were downregulated. In parallel, Rantes, IRF7, NOD1/2, TREM1, and hepatic injury signaling pathways were upregulated. Furthermore, current research identified Orosomucoid 2 (ORM2) in the liver as one of the mediators of the liver-brain axis due to heat exposure. In conclusion, the transcriptome profiling in elderly heat-stressed mice revealed a coordinated network of liver-brain axis pathways with increased hepatic ORM2 secretion, possibly due to gut inflammation and dysbiosis. The above secretion of ORM2 may impact the brain through a leaky blood-brain barrier, thus emphasizing intricate multi-organ crosstalk.


Asunto(s)
Encéfalo , Perfilación de la Expresión Génica , Hígado , Animales , Ratones , Hígado/metabolismo , Encéfalo/metabolismo , Masculino , Transcriptoma , Eje Cerebro-Intestino , Respuesta al Choque Térmico/genética , Ratones Endogámicos C57BL , Transducción de Señal , Envejecimiento/genética , Envejecimiento/metabolismo
2.
Environ Int ; 185: 108514, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38394915

RESUMEN

Anatoxin-a and its analogues are potent neurotoxins produced by several genera of cyanobacteria. Due in part to its high toxicity and potential presence in drinking water, these toxins pose threats to public health, companion animals and the environment. It primarily exerts toxicity as a cholinergic agonist, with high affinity at neuromuscular junctions, but molecular mechanisms by which it elicits toxicological responses are not fully understood. To advance understanding of this cyanobacteria, proteomic characterization (DIA shotgun proteomics) of two common fish models (zebrafish and fathead minnow) was performed following  (±) anatoxin-a exposure. Specifically, proteome changes were identified and quantified in larval fish exposed for 96 h (0.01-3 mg/L (±) anatoxin-a and caffeine (a methodological positive control) with environmentally relevant treatment levels examined based on environmental exposure distributions of surface water data. Proteomic concentration - response relationships revealed 48 and 29 proteins with concentration - response relationships curves for zebrafish and fathead minnow, respectively. In contrast, the highest number of differentially expressed proteins (DEPs) varied between zebrafish (n = 145) and fathead minnow (n = 300), with only fatheads displaying DEPs at all treatment levels. For both species, genes associated with reproduction were significantly downregulated, with pathways analysis that broadly clustered genes into groups associated with DNA repair mechanisms. Importantly, significant differences in proteome response between the species was also observed, consistent with prior observations of differences in response using both behavioral assays and gene expression, adding further support to model specific differences in organismal sensitivity and/or response. When DEPs were read across from humans to zebrafish, disease ontology enrichment identified diseases associated with cognition and muscle weakness consistent with the prior literature. Our observations highlight limited knowledge of how (±) anatoxin-a, a commonly used synthetic racemate surrogate, elicits responses at a molecular level and advances its toxicological understanding.


Asunto(s)
Toxinas de Cianobacterias , Cyprinidae , Tropanos , Contaminantes Químicos del Agua , Animales , Humanos , Pez Cebra/metabolismo , Proteoma/metabolismo , Larva , Proteómica , Cyprinidae/metabolismo , Contaminantes Químicos del Agua/toxicidad
3.
BMC Pharmacol Toxicol ; 24(1): 78, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093299

RESUMEN

BACKGROUND: Microcystins (MCs), potent hepatotoxins pose a significant health risk to humans, particularly children, who are more vulnerable due to higher water intake and increased exposure during recreational activities. METHODS: Here, we investigated the role of host microbiome-linked acetate in modulating inflammation caused by early-life exposure to the cyanotoxin Microcystin-LR (MC-LR) in a juvenile mice model. RESULTS: Our study revealed that early-life MC-LR exposure disrupted the gut microbiome, leading to a depletion of key acetate-producing bacteria and decreased luminal acetate concentration. Consequently, the dysbiosis hindered the establishment of a gut homeostatic microenvironment and disrupted gut barrier function. The NOD-like receptor family pyrin domain - containing 3 (NLRP3) inflammasome, a key player in MC-induced hepatoxicity emerged as a central player in this process, with acetate supplementation effectively preventing NLRP3 inflammasome activation, attenuating hepatic inflammation, and decreasing pro-inflammatory cytokine production. To elucidate the mechanism underlying the association between early-life MC-LR exposure and the progression of metabolic dysfunction associated steatotic liver disease (MASLD), we investigated the role of acetate binding to its receptor -G-protein coupled receptor 43 (GPR43) on NLRP3 inflammasome activation. Our results demonstrated that acetate-GPR43 signaling was crucial for decreasing NLRP3 protein levels and inhibiting NLRP3 inflammasome assembly. Further, acetate-induced decrease in NLRP3 protein levels was likely mediated through proteasomal degradation rather than autophagy. Overall, our findings underscore the significance of a healthy gut microbiome and its metabolites, particularly acetate, in the progression of hepatotoxicity induced by early life toxin exposure, crucial for MASLD progression. CONCLUSIONS: This study highlights potential therapeutic targets in gut dysbiosis and NLRP3 inflammasome activation for mitigating toxin-associated inflammatory liver diseases.


Asunto(s)
Microbioma Gastrointestinal , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Acetatos , Disbiosis/inducido químicamente , Inflamasomas , Inflamación/tratamiento farmacológico , Microcistinas/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
4.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003543

RESUMEN

Harmful algal bloom toxin microcystin has been associated with metabolic dysfunction-associated steatotic liver disease (MASLD) progression and hepatocellular carcinoma, though the mechanisms remain unclear. Using an established mouse model of MASLD, we show that the NLRP3-Hsp70-TLR4 axis drives in part the inflammation of the liver lobule that results in the progression of MASLD to metabolic dysfunction-associated steatohepatitis (MASH). Results showed that mice deficient in NLRP3 exhibited decreased MASH pathology, blocked Hsp70 expression, and co-binding with NLRP3, a crucial protein component of the liver inflammasome. Hsp70, both in the liver lobule and extracellularly released in the liver vasculature, acted as a ligand to TLR4 in the liver, primarily in hepatocytes to activate the NF-κB pathway, ultimately leading to hepatic cell death and necroptosis, a crucial pathology of MASH progression. The above studies show a novel insight into an inflammasome-triggered Hsp70-mediated inflammation that may have broader implications in MASLD pathology. MASLD to MASH progression often requires multiple hits. One of the mediators of progressive MASLD is environmental toxins. In this research report, we show for the first time a novel mechanism where microcystin-LR, an environmental toxin, advances MASLD to MASH by triggering the release of Hsp70 as a DAMP to activate TLR4-induced inflammation in the liver.


Asunto(s)
Inflamasomas , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Floraciones de Algas Nocivas , Microcistinas/toxicidad , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Inflamación/metabolismo
5.
Environ Health Perspect ; 131(6): 67010, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37342990

RESUMEN

BACKGROUND: Cyanobacterial harmful algal blooms (CyanoHABs) originate from the excessive growth or bloom of cyanobacteria often referred to as blue-green algae. They have been on the rise globally in both marine and freshwaters in recently years with increasing frequency and severity owing to the rising temperature associated with climate change and increasing anthropogenic eutrophication from agricultural runoff and urbanization. Humans are at a great risk of exposure to toxins released from CyanoHABs through drinking water, food, and recreational activities, making CyanoHAB toxins a new class of contaminants of emerging concern. OBJECTIVES: We investigated the toxic effects and mechanisms of microcystin-LR (MC-LR), the most prevalent CyanoHAB toxin, on the ovary and associated reproductive functions. METHODS: Mouse models with either chronic daily oral or acute intraperitoneal exposure, an engineered three-dimensional ovarian follicle culture system, and human primary ovarian granulosa cells were tested with MC-LR of various dose levels. Single-follicle RNA sequencing, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting, immunohistochemistry (IHC), and benchmark dose modeling were used to examine the effects of MC-LR on follicle maturation, hormone secretion, ovulation, and luteinization. RESULTS: Mice exposed long term to low-dose MC-LR did not exhibit any differences in the kinetics of folliculogenesis, but they had significantly fewer corpora lutea compared with control mice. Superovulation models further showed that mice exposed to MC-LR during the follicle maturation window had significantly fewer ovulated oocytes. IHC results revealed ovarian distribution of MC-LR, and mice exposed to MC-LR had significantly lower expression of key follicle maturation mediators. Mechanistically, in both murine and human granulosa cells exposed to MC-LR, there was reduced protein phosphatase 1 (PP1) activity, disrupted PP1-mediated PI3K/AKT/FOXO1 signaling, and less expression of follicle maturation-related genes. DISCUSSION: Using both in vivo and in vitro murine and human model systems, we provide data suggesting that environmentally relevant exposure to the CyanoHAB toxin MC-LR interfered with gonadotropin-dependent follicle maturation and ovulation. We conclude that MC-LR may pose a nonnegligible risk to women's reproductive health by heightening the probability of irregular menstrual cycles and infertility related to ovulatory disorders. https://doi.org/10.1289/EHP12034.


Asunto(s)
Cianobacterias , Floraciones de Algas Nocivas , Humanos , Femenino , Animales , Ratones , Fosfatidilinositol 3-Quinasas , Microcistinas/toxicidad , Microcistinas/análisis , Ovulación , Folículo Ovárico
6.
Pharmaceutics ; 15(5)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37242791

RESUMEN

The rapid increase in drug-resistant and multidrug-resistant infections poses a serious challenge to antimicrobial therapies, and has created a global health crisis. Since antimicrobial peptides (AMPs) have escaped bacterial resistance throughout evolution, AMPs are a category of potential alternatives for antibiotic-resistant "superbugs". The Chromogranin A (CgA)-derived peptide Catestatin (CST: hCgA352-372; bCgA344-364) was initially identified in 1997 as an acute nicotinic-cholinergic antagonist. Subsequently, CST was established as a pleiotropic hormone. In 2005, it was reported that N-terminal 15 amino acids of bovine CST (bCST1-15 aka cateslytin) exert antibacterial, antifungal, and antiyeast effects without showing any hemolytic effects. In 2017, D-bCST1-15 (where L-amino acids were changed to D-amino acids) was shown to exert very effective antimicrobial effects against various bacterial strains. Beyond antimicrobial effects, D-bCST1-15 potentiated (additive/synergistic) antibacterial effects of cefotaxime, amoxicillin, and methicillin. Furthermore, D-bCST1-15 neither triggered bacterial resistance nor elicited cytokine release. The present review will highlight the antimicrobial effects of CST, bCST1-15 (aka cateslytin), D-bCST1-15, and human variants of CST (Gly364Ser-CST and Pro370Leu-CST); evolutionary conservation of CST in mammals; and their potential as a therapy for antibiotic-resistant "superbugs".

7.
Toxins (Basel) ; 15(4)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37104227

RESUMEN

The effects of global warming are not limited to rising global temperatures and have set in motion a complex chain of events contributing to climate change. A consequence of global warming and the resultant climate change is the rise in cyanobacterial harmful algal blooms (cyano-HABs) across the world, which pose a threat to public health, aquatic biodiversity, and the livelihood of communities that depend on these water systems, such as farmers and fishers. An increase in cyano-HABs and their intensity is associated with an increase in the leakage of cyanotoxins. Microcystins (MCs) are hepatotoxins produced by some cyanobacterial species, and their organ toxicology has been extensively studied. Recent mouse studies suggest that MCs can induce gut resistome changes. Opportunistic pathogens such as Vibrios are abundantly found in the same habitat as phytoplankton, such as cyanobacteria. Further, MCs can complicate human disorders such as heat stress, cardiovascular diseases, type II diabetes, and non-alcoholic fatty liver disease. Firstly, this review describes how climate change mediates the rise in cyanobacterial harmful algal blooms in freshwater, causing increased levels of MCs. In the later sections, we aim to untangle the ways in which MCs can impact various public health concerns, either solely or in combination with other factors resulting from climate change. In conclusion, this review helps researchers understand the multiple challenges brought forth by a changing climate and the complex relationships between microcystin, Vibrios, and various environmental factors and their effect on human health and disease.


Asunto(s)
Cianobacterias , Diabetes Mellitus Tipo 2 , Humanos , Animales , Ratones , Microcistinas/toxicidad , Floraciones de Algas Nocivas , Toxinas de Cianobacterias , Cambio Climático , Hígado , Encéfalo
9.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36835663

RESUMEN

The pathophysiology of Gulf War Illness (GWI) remains elusive even after three decades. The persistence of multiple complex symptoms along with metabolic disorders such as obesity worsens the health of present Gulf War (GW) Veterans often by the interactions of the host gut microbiome and inflammatory mediators. In this study, we hypothesized that the administration of a Western diet might alter the host metabolomic profile, which is likely associated with the altered bacterial species. Using a five-month symptom persistence GWI model in mice and whole-genome sequencing, we characterized the species-level dysbiosis and global metabolomics, along with heterogenous co-occurrence network analysis, to study the bacteriome-metabolomic association. Microbial analysis at the species level showed a significant alteration of beneficial bacterial species. The beta diversity of the global metabolomic profile showed distinct clustering due to the Western diet, along with the alteration of metabolites associated with lipid, amino acid, nucleotide, vitamin, and xenobiotic metabolism pathways. Network analysis showed novel associations of gut bacterial species with metabolites and biochemical pathways that could be used as biomarkers or therapeutic targets to ameliorate symptom persistence in GW Veterans.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Ratones , Animales , Guerra del Golfo , Dieta Occidental , Microbioma Gastrointestinal/fisiología , Bacterias , Obesidad
10.
Cells ; 13(1)2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38201260

RESUMEN

Gulf War (GW) veterans show gastrointestinal disturbances and gut dysbiosis. Prolonged antibiotic treatments commonly employed in veterans, especially the use of fluoroquinolones and aminoglycosides, have also been associated with dysbiosis. This study investigates the effect of prolonged antibiotic exposure on risks of adverse renal pathology and its association with gut bacterial species abundance in underlying GWI and aims to uncover the molecular mechanisms leading to possible renal dysfunction with aging. Using a GWI mouse model, administration of a prolonged antibiotic regimen involving neomycin and enrofloxacin treatment for 5 months showed an exacerbated renal inflammation with increased NF-κB activation and pro-inflammatory cytokines levels. Involvement of the high mobility group 1 (HMGB1)-mediated receptor for advanced glycation end products (RAGE) activation triggered an inflammatory phenotype and increased transforming growth factor-ß (TGF-ß) production. Mechanistically, TGF-ß- induced microRNA-21 upregulation in the renal tissue leads to decreased phosphatase and tensin homolog (PTEN) expression. The above event led to the activation of protein kinase-B (AKT) signaling, resulting in increased fibronectin production and fibrosis-like pathology. Importantly, the increased miR-21 was associated with low levels of Lachnospiraceae in the host gut which is also a key to heightened HMGB1-mediated inflammation. Overall, though correlative, the study highlights the complex interplay between GWI, host gut dysbiosis, prolonged antibiotics usage, and renal pathology via miR-21/PTEN/AKT signaling.


Asunto(s)
Proteína HMGB1 , Enfermedades Renales , MicroARNs , Animales , Ratones , Antibacterianos/efectos adversos , Proteínas Proto-Oncogénicas c-akt , Disbiosis , Guerra del Golfo , Enfermedad Crónica , Clostridiales , Fibrosis , Inflamación , Factor de Crecimiento Transformador beta
11.
Toxins (Basel) ; 14(12)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36548732

RESUMEN

Epidemiological studies have reported a strong association between liver injury and incidences of hepatocellular carcinoma in sections of humans globally. Several preclinical studies have shown a strong link between cyanotoxin exposure and the development of nonalcoholic steatohepatitis, a precursor of hepatocellular carcinoma. Among the emerging threats from cyanotoxins, new evidence shows cylindrospermopsin release in freshwater lakes. A known hepatotoxin in higher concentrations, we examined the possible role of cylindrospermopsin in causing host gut dysbiosis and its association with liver pathology in a mouse model of toxico-pharmacokinetics and hepatic pathology. The results showed that oral exposure to cylindrospermopsin caused decreased diversity of gut bacteria phyla accompanied by an increased abundance of Clostridioides difficile and decreased abundance of probiotic flora such as Roseburia, Akkermanssia, and Bacteroides thetaiotamicron, a signature most often associated with intestinal and hepatic pathology and underlying gastrointestinal disease. The altered gut dysbiosis was also associated with increased Claudin2 protein in the intestinal lumen, a marker of gut leaching and endotoxemia. The study of liver pathology showed marked liver inflammation, the release of damage-associated molecular patterns, and activation of toll-like receptors, a hallmark of consistent and progressive liver damage. Hepatic pathology was also linked to increased Kupffer cell activation and stellate cell activation, markers of progressive liver damage often linked to the development of liver fibrosis and carcinoma. In conclusion, the present study provides additional evidence of cylindrospermopsin-linked progressive liver pathology that may be very well-linked to gut dysbiosis, though definitive evidence involving this link needs to be studied further.


Asunto(s)
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/metabolismo , Macrófagos del Hígado/metabolismo , Macrófagos del Hígado/patología , Microbioma Gastrointestinal/fisiología , Disbiosis , Hígado/metabolismo , Cirrosis Hepática/patología , Neoplasias Hepáticas/metabolismo , Inflamación/metabolismo
12.
Sci Rep ; 12(1): 11516, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799048

RESUMEN

A strong association between exposure to the common harmful algal bloom toxin microcystin and the altered host gut microbiome has been shown. We tested the hypothesis that prior exposure to the cyanotoxin microcystin-LR may alter the host resistome. We show that the mice exposed to microcystin-LR had an altered microbiome signature that harbored antibiotic resistance genes. Host resistome genotypes such as mefA, msrD, mel, ant6, and tet40 increased in diversity and relative abundance following microcystin-LR exposure. Interestingly, the increased abundance of these genes was traced to resistance to common antibiotics such as tetracycline, macrolides, glycopeptide, and aminoglycosides, crucial for modern-day treatment of several diseases. Increased abundance of these genes was positively associated with increased expression of PD1, a T-cell homeostasis marker, and pleiotropic inflammatory cytokine IL-6 with a concomitant negative association with immunosurveillance markers IL-7 and TLR2. Microcystin-LR exposure also caused decreased TLR2, TLR4, and REG3G expressions, increased immunosenescence, and higher systemic levels of IL-6 in both wild-type and humanized mice. In conclusion, the results show a first-ever characterization of the host resistome following microcystin-LR exposure and its connection to host immune status and antimicrobial resistance that can be crucial to understand treatment options with antibiotics in microcystin-exposed subjects in clinical settings.


Asunto(s)
Microbioma Gastrointestinal , Inmunosenescencia , Microcistinas , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Homeostasis , Interleucina-6 , Ratones , Microcistinas/toxicidad , Receptor Toll-Like 2
13.
Commun Biol ; 5(1): 552, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672382

RESUMEN

Chronic multisymptom illness (CMI) affects a subsection of elderly and war Veterans and is associated with systemic inflammation. Here, using a mouse model of CMI and a group of Gulf War (GW) Veterans' with CMI we show the presence of an altered host resistome. Results show that antibiotic resistance genes (ARGs) are significantly altered in the CMI group in both mice and GW Veterans when compared to control. Fecal samples from GW Veterans with persistent CMI show a significant increase of resistance to a wide class of antibiotics and exhibited an array of mobile genetic elements (MGEs) distinct from normal healthy controls. The altered resistome and gene signature is correlated with mouse serum IL-6 levels. Altered resistome in mice also is correlated strongly with intestinal inflammation, decreased synaptic plasticity, reversible with fecal microbiota transplant (FMT). The results reported might help in understanding the risks to treating hospital acquired infections in this population.


Asunto(s)
Guerra del Golfo , Veteranos , Anciano , Enfermedad Crónica , Humanos , Inflamación/genética
15.
Biochem Pharmacol ; 199: 115012, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35393120

RESUMEN

Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY3-36) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis" (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.


Asunto(s)
Leptina , Obesidad , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Metabolismo Energético/fisiología , Humanos , Insulina/metabolismo , Leptina/metabolismo , Obesidad/metabolismo
16.
Biochem Pharmacol ; 199: 115015, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35395240

RESUMEN

Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.


Asunto(s)
Disruptores Endocrinos , Adipogénesis , Tejido Adiposo , Preescolar , Disruptores Endocrinos/toxicidad , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Obesidad/etiología
17.
Cells ; 10(12)2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34943813

RESUMEN

Acute respiratory distress syndrome (ARDS) is a serious lung condition characterized by severe hypoxemia leading to limitations of oxygen needed for lung function. In this study, we investigated the effect of anandamide (AEA), an endogenous cannabinoid, on Staphylococcal enterotoxin B (SEB)-mediated ARDS in female mice. Single-cell RNA sequencing data showed that the lung epithelial cells from AEA-treated mice showed increased levels of antimicrobial peptides (AMPs) and tight junction proteins. MiSeq sequencing data on 16S RNA and LEfSe analysis demonstrated that SEB caused significant alterations in the microbiota, with increases in pathogenic bacteria in both the lungs and the gut, while treatment with AEA reversed this effect and induced beneficial bacteria. AEA treatment suppressed inflammation both in the lungs as well as gut-associated mesenteric lymph nodes (MLNs). AEA triggered several bacterial species that produced increased levels of short-chain fatty acids (SCFAs), including butyrate. Furthermore, administration of butyrate alone could attenuate SEB-mediated ARDS. Taken together, our data indicate that AEA treatment attenuates SEB-mediated ARDS by suppressing inflammation and preventing dysbiosis, both in the lungs and the gut, through the induction of AMPs, tight junction proteins, and SCFAs that stabilize the gut-lung microbial axis driving immune homeostasis.


Asunto(s)
Ácidos Araquidónicos/uso terapéutico , Endocannabinoides/uso terapéutico , Microbioma Gastrointestinal , Tracto Gastrointestinal/patología , Pulmón/patología , Alcamidas Poliinsaturadas/uso terapéutico , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/microbiología , Animales , Péptidos Antimicrobianos/metabolismo , Ácidos Araquidónicos/farmacología , Butiratos/metabolismo , Ciego/patología , Separación Celular , Colon/efectos de los fármacos , Colon/patología , Análisis Discriminante , Disbiosis/complicaciones , Disbiosis/microbiología , Endocannabinoides/farmacología , Enterotoxinas , Femenino , Tracto Gastrointestinal/efectos de los fármacos , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/patología , Activación de Linfocitos/efectos de los fármacos , Ratones Endogámicos C57BL , Neumonía/tratamiento farmacológico , Neumonía/microbiología , Alcamidas Poliinsaturadas/farmacología , Síndrome de Dificultad Respiratoria/complicaciones , Linfocitos T/efectos de los fármacos
18.
Environ Sci Eur ; 33(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367861

RESUMEN

BACKGROUND: Though anatoxin-a (antx-a) is a globally important cyanobacterial neurotoxin in inland waters, information on sublethal toxicological responses of aquatic organisms is limited. We examined influences of (±) antx-a (11-3490 µg/L) on photolocomotor behavioral responses and gene transcription associated with neurotoxicity, oxidative stress and hepatotoxicity, in two of the most common alternative vertebrate and fish models, Danio rerio (zebrafish) and Pimephales promelas (fathead minnow). We selected environmentally relevant treatment levels from probabilistic exposure distributions, employed standardized experimental designs, and analytically verified treatment levels using isotope-dilution liquid chromatography tandem mass spectrometry. Caffeine was examined as a positive control. RESULTS: Caffeine influences on fish behavior responses were similar to previous studies. Following exposure to (±) antx-a, no significant photolocomotor effects were observed during light and dark transitions for either species. Though zebrafish behavioral responses profiles were not significantly affected by (±) antx-a at the environmentally relevant treatment levels examined, fathead minnow stimulatory behavior was significantly reduced in the 145-1960 µg/L treatment levels. In addition, no significant changes in transcription of target genes were observed in zebrafish; however, elavl3 and sod1 were upregulated and gst and cyp3a126 were significantly downregulated in fathead minnows. CONCLUSION: We observed differential influences of (±) antx-a on swimming behavior and gene transcription in two of the most common larval fish models employed for prospective and retrospective assessment of environmental contaminants and water quality conditions. Sublethal responses of fathead minnows were consistently more sensitive than zebrafish to this neurotoxin at the environmentally relevant concentrations examined. Future studies are needed to understand such interspecies differences, the enantioselective toxicity of this compound, molecular initiation events within adverse outcome pathways, and subsequent individual and population risks for this emerging water quality threat.

19.
Brain Sci ; 11(7)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34356139

RESUMEN

Gulf War Illness (GWI) is a chronic multi-symptomatic illness that is associated with fatigue, pain, cognitive deficits, and gastrointestinal disturbances and presents a significant challenge to treat in clinics. Our previous studies show a role of an altered Gut-Brain axis pathology in disease development and symptom persistence in GWI. The present study utilizes a mouse model of GWI to study the role of a labdane diterpenoid andrographolide (AG) to attenuate the Gut-Brain axis-linked pathology. Results showed that AG treatment in mice (100 mg/kg) via oral gavage restored bacteriome alterations, significantly increased probiotic bacteria Akkermansia, Lachnospiraceae, and Bifidobacterium, the genera that are known to aid in preserving gut and immune health. AG also corrected an altered virome with significant decreases in virome families Siphoviridae and Myoviridae known to be associated with gastrointestinal pathology. AG treatment significantly restored tight junction proteins that correlated well with decreased intestinal proinflammatory mediators IL-1ß and IL-6 release. AG treatment could restore Claudin-5 levels, crucial for maintaining the BBB integrity. Notably, AG could decrease microglial activation and increase neurotrophic factor BDNF, the key to neurogenesis. Mechanistically, microglial conditioned medium generated from IL-6 stimulation with or without AG in a concentration similar to circulating levels found in the GWI mouse model and co-incubated with neuronal cells in vitro, decreased Tau phosphorylation and neuronal apoptosis. In conclusion, we show that AG treatment mitigated the Gut-Brain-Axis associated pathology in GWI and may be considered as a potential therapeutic avenue for the much-needed bench to bedside strategies in GWI.

20.
Toxicology ; 461: 152901, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34416350

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) has been shown to be associated with extrahepatic comorbidities including neuronal inflammation and Alzheimer's-like pathology. Environmental and genetic factors also act as a second hit to modulate severity and are expected to enhance the NAFLD-linked neuropathology. We hypothezied that environmental microcystin-LR (MC-LR), a toxin produced by harmful algal blooms of cyanobacteria, exacerbates the neuroinflammation and degeneration of neurons associated with NAFLD. Using a mouse model of NAFLD, exposed to MC-LR subsequent to the onset of fatty liver, we show that the cyanotoxin could significantly increase proinflammatory cytokine expression in the frontal cortex and cause increased expression of Lcn2 and HMGB1. The above effects were NLRP3 inflammasome activation-dependent since the use of NLRP3 knockout mice abrogated the increase in inflammation. NLRP3 was also responsible for decreased expression of the blood-brain barrier (BBB) tight junction proteins Occludin and Claudin 5 suggesting BBB dysfunction was parallel to neuroinflammation following microcystin exposure. An increased circulatory S100B release, a hallmark of astrocyte activation in MC-LR exposed NAFLD mice also confirmed BBB integrity loss, but the astrocyte activation observed in vivo was NLRP3 independent suggesting an important role of a secondary S100B mediated crosstalk. Mechanistically, conditioned medium from reactive astrocytes and parallel S100B incubation in neuronal cells caused increased inducible NOS, COX-2, and higher BAX/ Bcl2 protein expression suggesting oxidative stress-mediated neuronal cell apoptosis crucial for neurodegeneration. Taken together, MC-LR exacerbated neuronal NAFLD-linked comorbidities leading to cortical inflammation, BBB dysfunction, and neuronal apoptosis.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Toxinas Marinas/toxicidad , Microcistinas/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Animales , Apoptosis/efectos de los fármacos , Barrera Hematoencefálica/patología , Modelos Animales de Enfermedad , Exposición a Riesgos Ambientales/efectos adversos , Inflamasomas/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Neuroinflamatorias/fisiopatología , Estrés Oxidativo/efectos de los fármacos , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...